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Abstract

In this master thesis we study patterns in animal populations that arise due
to a density dependent movement speed v of one of the involved species. This
new description of the movement leads to a Cahn Hilliard equation describing
the evolution of the concentration of the animal specie in question. Our main
interest is a modification of the generally used standard predator-prey reaction-
diffusion type of description of the evolution of two interacting species, where
the standard diffusive movement of one of the species is replaced with this fast
Cahn-Hilliard like movement. This leads to a fourth order slow-fast partial
differential equation, which forms the system that will be the main object of
study in this thesis:

∂m

∂t
= dm∇

(
v

[
v +m

∂v

∂m

]
∇m+ vm

∂v

∂a
∇a− κ∇∆m

)
+ εH(m, a)

∂a

∂t
= εda∆a+ εG(m, a)

In this thesis we first present an in-depth literature study of the general Cahn
Hilliard system focusing on the evolution - both short and long term - of solutions
starting from an uniform state. Subsequently we will analyze the full population
model, with the Cahn-Hilliard like movement, on an one-dimensional spatial
domain via a weakly non-linear stability analysis, leading to a (real) Ginzburg-
Landau equation as amplitude equation for variations from steady states of the
model. All our findings will be applied to a system describing the interaction
between mussels and algae. This analytic approach, supplemented by numerical
simulations on the one-dimensional model, is then used to explain the occurrence
and behaviour of patterns in mussel beds.
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Introduction

Finding Jesus in a pizza, seeing a face on Mars’s surface, computing the golden
ratio with cauliflowers or going all-in on black after a red streak in roulette.
Patterns - humans tend to see them everywhere. Though some of these observed
‘patterns’ arise by mere coincidences, nature does have many real patterns.
With the aid of science we have already successfully explained patterns in (solar)
eclipses, the creation of offspring and fractals - amongst many others.

A special kind of patterns are the so-called self-organised patterns. These
patterns arise purely out of local interactions between components of the system,
without external stimuli. Examples of these kind of patterns include the stripes
of zebras, the facet eye of a fruit fly and vegetation patterns (see Figure 1).

(a) (b) (c)

Figure 1 – Examples of self-organized patterns in nature. (a) The stripes of
a zebra. Photo by André Karwath under the Creative Commons Attribution
License, (b) a scanning electron microscope image of the eye of a fruit fly, by
Darthmouth Electron Microscope Facility and (c) the vegetation patterns in a
Tiger Bush, courtesy of the U.S. Geological survey.

Studying this self-organisation is important. In ecological systems, a good un-
derstanding of the patterns can point us to early warning signals to prevent
catastrophic shifts in our ecosystem - for instance to prevent desertification.
In biological systems, it can lead to better ways to repair coincidental defects
in early embryos. And in chemical engineering, this understanding can give
clues how to increase the desired output, while minimizing the unwanted, often
polluting, side products.

The first breakthrough in this line of research was by Alan Turing. In his 1952
paper [1] he described how activator-inhibitor mechanisms in reaction-diffusion
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(a) (b)

(c) (d)

Figure 2 – Density depend movement as observed in populations of mussels (a,c)
and elks (b,d). In (a) and (b) the patterns, that are observed in nature, are shown
for both mussels (a) and elk herds (b). The black circles denote the data points,
while the green line in (d) is a quadratic fit. In both figures (c) and (d) we can
see that there is a global minimum in the movement speed at some intermediate
density of the animals. (conform [7, 6])

equations can lead to spatial patterns via a bifurcation of a homegeneous state
(nowadays called a Turing bifurcation). This insight was so powerful that it
explained a vast variety of phenomena, ranging from animal markings [2] to
dessertification [3] to patterns in chemical reactions [4].

This Turing mechanism is not the only way self-organisation presents itself. It
can also occur via a density dependent movement, where the speed of a specie is
determined by the local density of the specie. This sort of movement is seen in
many animal populations, such as mussels [5, 6], elk herds [7], bacteria and snails
[8]. In Figure 2 examples of these density dependent movements are shown, for
both mussels and elk herds.

It is theorized that this specific density dependent movement, with a non-zero
speed minimizing density, is the result from a balancing of two conflicting desires
of an individual. On one hand it is beneficial to be near others, as this diminishes
ones chances of being eaten by a predator. For some species this can be a
biological effect - mussels, for example, have the tendency to literally stick to
each other - though it’s also a probabilistic effect - as an individual prey is less
likely to be eaten when there is an abundance of them. On the other hand
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(a) (b)

Figure 3 – Typical patterns observed in (a) the Cahn Hilliard equation (b)
mussel beds. The latter image is made in an lab experiment (see [5]).

sticking together has a negative effect as well, because the available food must
be shared with many, possibly leading to hunger or death.

In 2013 Liu et al [5] showed that the density dependent movement speed of
mussels can be incorporated in a single-species evolution model as a Cahn-
Hilliard equation,

∂m

∂t
= dm∇

(
v(m)

[
v +m

∂v

∂m

]
∇m− κ∇(∆m)

)
, (1)

where dm and κ are constants, m is the density of the mussels and v(m) is the
movement speed of the mussels at density m. It does not matter whether this
density is in mass per volume or units per volume.

The Cahn-Hilliard equation is a well-studied equation in solid state physics.
This equation was introduced by Cahn and Hilliard in 1958-1959 [9, 10, 11] to
model the behaviour of a two-component liquid. The most basic and most often
seen form of this Cahn-Hilliard equation is

∂c

∂t
= D∆

[
c− c3 − γ∆c

]
, (2)

where D is the diffusion constant, γ is some (often small) constant and c is the
concentration of one of the components.

The ingenious idea of Cahn and Hilliard was to include both a double well-
potential and a surface energy. Since the latter only has a secondary role in
determining the energy of the system it was often neglected altogether in earlier
descriptions of these systems. However, only by the inclusion of these terms
it is possible to find the patterns that were observed in real materials. These
patterns - as turned out - were also very similar to some of the patterns observed
in mussel beds [5]. In Figure 3 we have shown patterns resulting from the Cahn-
Hilliard equation and patterns observed in mussels [5].

Though visually the patterns of mussels and the Cahn-Hilliard equation look
similar, this does not necessarily mean that we can accurately model mussels
with this equation. To strengthen this belief, we can inspect more advanced
behaviour of the Cahn-Hilliard equation. In 1961 Lifschitz and Slyozov [12]
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showed that the typical wavelength of the patterns created by the Cahn-Hilliard
equation follows a power law: L(t) ∝ t1/3. This same power law is also initially
found in mussel beds (see Figure 4 and [5]), strengthening our belief in the
Cahn-Hilliard equation as description for the movement of mussels.

Figure 4 – Correlation between the typical wavelength of patterns for mussels,
in experimental set-up (blue and green lines) and in a numerical simulation (pur-
ple). The dashed lines are linear fits over the initial behaviour (i.e. before a
wavelength is ‘selected’). For the numerical simulation the theorized power law
is used instead. In these plots we can clearly see that there is some sort of
wavelength selection in the experiments after some hours.

Over longer time periods this Lifschitz-Slyozov power law is no longer obeyed -
it seems like the mussels select a wavelength. Hence this means that the Cahn-
Hilliard equation no longer accurately describes the behaviour of mussels. In
experiments this was observed already after several hours so the mortality and
reproduction of mussels does not play a role. Moreover, the experiments were
conducted without any food supply (algae) so that there isn’t any interaction
with other species as well. Hence this ‘wavelength selection’ must be explained
without any of these effects that generally lead to patterns.

The aim of this master’s research is twofold: on one hand we want to under-
stand the occurrence of this wavelength selection; on the other hand we want
to understand the long-time effect of the density-dependent movement speed
on populations in nature - where there are interactions with other species and
mortality and birth play a role. The general equation that will be our model
throughout this thesis is

∂m

∂t
= dm∇

(
v

(
v +m

∂v

∂m

)
∇m+ vm

∂v

∂a
∇a− κ∇∆m

)
+ εH(m, a) (3a)

∂a

∂t
= εda∆a+ εG(m, a). (3b)
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Here m denotes the concentration of the predetor (mussels) and a of the prey
(algae). Moreover H,G : R2 → R are so-called interaction terms that model
the interactions between the species, dm and da are diffusion constants and κ
is a small parameter. Finally 0 < ε � 1 is a small parameter, which is added
to emphasize that interactions between species and the diffusion of the second
specie is small compared to the Cahn-Hilliard like behaviour of the predators
(e.g. the mussels).

In this model we can think of the movement speed of mussels, v, as a function not
only of the mussels density but of the algae’s density as well; i.e. v : R2 → R
(m, a) 7→ v(m, a). This is a more general form of the previously described
density dependent movement speed and allows us to study situation in which
movement speed is decreased in case of an abundance of food, which is found
in experiments [6].

Although we will constantly talk about mussels and algae, we emphasize that
this model is suitable for many other predator-prey and animal-food systems
as well - as long as either the predator or the prey has a density dependent
movement speed. The general analysis of this thesis is therefore applicable to
these models as well, though the analysis on the specific mussel-algae system,
with corresponding interactions terms, is not and should be adapted for each
new population system.

This thesis is divided into three major chapters. In Chapter 1 we explain the
model in-depth and we set-up the specific situation of a mussel-algae system.
We also describe two possible forms for the density dependent movement speed
in this chapter. Then in Chapter 2 we study the Cahn-Hilliard equation (i.e.
equation (3) with ε = 0) and give a possible explanation for the wavelength
selection. Finally Chapter 3 deals with the full model, when ε 6= 0. Here we
apply a linear stability analysis and a weakly non-linear stability analysis to get
a grip on the possible patterns that can occur. Both Chapter 2 and Chapter 3
also feature simulations of the population model for a system of mussels, that
give a good insight in the behaviour of these systems.
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Chapter 1

Ecological Set-Up

Mathematics has been very successful in explaining a vast variety of phenomena,
from ecological ones to medical and economical effects. Applied mathematics is
very powerful and useful. Though before we can exploit all the machinery it has
to offer, we need to capture the essences of the phenomena we want to study
in a mathematical model. Ideally this model is as simple as it can be, though
it should still include all essential subtleties of the system we are interested
in. As this is a very important - if not the most important - task in a study
in applied mathematics, this first chapter deals with the modeling aspect of
pattern formation in animal populations.

This chapter starts in section 1.1 by building up the model, starting from an
often used reaction-diffusion equation. We describe everything in generalities,
though we also include concrete possibilities for the specif mussel-algae system
that we want to understand. Specifically, we discuss how we can model the
density dependent movement speed in section 1.1.4. This all results in the
following equation describing our model that we study in the following chapters:

∂m

∂t
= dm∇

(
v

(
v +m

∂v

∂m

)
∇m+ vm

∂v

∂a
∇a− κ∇∆m

)
+ εH(m, a)

∂a

∂t
= εda∆a+ εG(m, a).

Moreover, in the second part of this chapter, in section 1.2, we study a reaction-
diffusion system, that describes the interaction between algae and mussels. We
determine the kind of patterns that can already be explained by this model, of
the form

∂m

∂t
= dm∆m+H(m, a)

∂a

∂t
= da∆a+G(m, a).

This description does not have the density-dependent movement speed. However
it is still useful to study this system, so we know what kind of patterns can be
explained with this description. Therefore we can ultimately get a good idea of
the additional effects that adding a density-dependent movement has.
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1.1 Explanation of the model

In this section we explain the general set-up of population models. We start
by explaining a general reaction-diffusion equation and then later modify it
to include a density-dependent movement speed. Throughout this section we
denote one of the species with m (for mussel) and the other as a (for algae).
The general description is however also applicable to other systems, for instance
other predator-prey population models or chemical reactions.

1.1.1 Reaction-Diffusion Equations

Let’s start by imagining that our mussels and algae don’t move and inspect what
happens at a particular point. We want to have a model that describes how
the concentration of mussels and algae (at a specific point) change over time.
Since there is interaction between mussels and algae, because mussels eat algae
and because of mortality and birth, we do not expect this concentration to be
constant. Hence we should try to model the rate of change of the concentration,
taking the interactions into account. This can in general be done by the following
ordinary differential equation:

∂m

∂t
= H(m, a)

∂a

∂t
= G(m, a)

The functions H,G : R2 → R are the so-called interactions terms. These terms
describe the behaviour that is observed in the system (mortality, births, eating
and so on). They dependent heavily on the specific system we want to inspect
- the functions H and G probably will change a lot when we try to study any
other population model. In section 1.1.3 we will describe a possible form of
these interaction terms for our mussel-algae system.

In reality our no-movement assumption is nonsense of course. Hence a good
model should also include this spatial movement. The easiest and most used
way to incorporate this into our equations is to model it as diffusion. In this
description we need to find the amount of concentration that flows in each
direction, i.e. the flux of the concentration of mussel and algae. This flux,
denoted as ~J , can be computed using Fick’s law of diffusion that states that the
flux is proportional to the diffusion, i.e.

~J = −D∇m.

Here D is the diffusion constant of the specific specie1.

The amount of mussels that now move out due to diffusion is then equal to minus
the gradient of the flux (i.e. ∂m

∂t = −∇ · ~J - this is the continuity equation; see
for example [13]). The interactions terms that we have derived before of course

1We should note that D is not really a constant - it can for instance depend on the
temperature. For our study we assume that D is a constant and we ignore these fluctuations
in D in our study.
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still play the same role. Hence a model that combines this diffusion and the
interactions between species can be written as

∂m

∂t
= dm∆m+H(m, a)

∂a

∂t
= da∆a+G(m, a).

Here dm > 0 is the diffusion constant for mussels and da > 0 that for algae.

The model that we have now is not yet complete. It needs to be accompanied
by initial conditions and boundary conditions. For population models it is most
natural to assume that there is no concentration flowing out through the bound-
aries2. Hence we normally will apply so-called zero-flux or Neumann boundary
conditions at the boundaries. Hence the complete model can be captured in the
following set of equations:

∂m

∂t
(x, t) = dm∆m(x, t) +H(m(x, t), a(x, t)) when x ∈ Ω, (1.1a)

∂m

∂t
(x, t) = da∆a(x, t) +G(m(x, t), a(x, t)) when x ∈ Ω, (1.1b)

∇m(x, t) · n̂(x) = ∇a(x, t) · n̂(x) = 0 when x ∈ ∂Ω, (1.1c)

m(0, x) = m0(x), a(0, x) = a0(x) (1.1d)

Here Ω denotes the region we want to model and ∂Ω its boundary. Moreover n̂ is
the unit vector pointing outwards of the region3 Ω. For laboratory experiments
we can think of the box in which the mussels lie as this region Ω. The functions
m0 and a0 specify the initial configuration of the system. When we want to
study the behaviour of the mussel-algae system in nature, the region we are
inspecting is very large. Hence we can think of this region as infinitely large in
all directions and forget about the boundary conditions.

The model that we have described in equation (1.1) is a reaction-diffusion
equation. These are called this way, because of their initial usage in describing
the behaviour of chemical reactions. The major assumption in this description
is that of Fickian diffusion, which implicitly assumes that the movement speed
does not depend on density.

1.1.2 Density-dependent movement speed

As was shown by Liu et al [5] the movement speed of mussels does depend on
the density of the mussels. For population systems like these, with a density
dependent movement, we cannot model this system accurately with a reaction-
diffusion equation. Hence we must work to get a good description of the
movement of the mussels, which we can use instead of the Fickian diffusion
we have used before.

Now that the movement speed is not constant for all densities, we can assume
that the mussels still perform a random walk, though with individual density

2It is also possible to assume that we have an unbounded domain
3This implicitly assumes some regularities on the domain Ω. We will not talk about these

issues and just assume everything is smooth enough for our analysis.
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dependent movement speeds v(m, a). Moreover, we will also assume that the
mussels change directions with a turning rate τ that does not depend on the
density. The flux in this case is given by (see [14])

Jv = −v(m, a)

2τ
∇(v(m, a)m).

In this situation it is necessary to also include the effects of non-local long-range
interactions to the flux of the mussels. To do this, we must inspect the first
correction to the normal diffusion. It is shown in [15] that this first correction
comes from the third spatial derivative. Hence the flux due to non-local effects
is of the form

Jnl = κ̂∇(∆m),

where κ̂ > 0 is some (positive) constant that generally is small, because it is
only a correction to the normal diffusion.

The total flux in our model is just the sum of the two fluxes that we have
derived. Hence this specific form of the flux gives rise to the following equation
for the mussels (ignoring the interaction terms for now):

∂m

∂t
= −∇[Jv + Jnl]

= ∇
[

1

2τ
v(m, a)∇(v(m, a)m)− κ̂∇(∆m)

]
= ∇

[
1

2τ
v

(
(v +m

∂v

∂m
)∇m+m

∂v

∂a
∇a
)
− κ̂∇(∆m)

]
In the last step we have expanded the term∇(vm) and we suppressed the explicit
dependence of the speed on the density of mussels and algae for notational
simplicity. We can simplify this expression even more when we define dm := 1

2τ
and κ = 2τ κ̂. Hence we obtain

∂m

∂t
= dm∇

[
v

(
v +m

∂v

∂m

)
∇m+ vm

∂v

∂a
∇a− κ∇(∆m)

]
.

When we don’t include algae in our model, we can forget about the effect of
the algae’s density on the movement speed of the mussels. In this situation this
description reduces to the special form of the Cahn-Hilliard equation:

∂m

∂t
= dm∇

[
v

(
v +m

∂v

∂m

)
∇m− κ∇∆m

]
We are however interested in the model that includes algae. Moreover, we are
also interested in the long-term behaviour of the system and hence we also want
to include the interaction terms. In principle we can just add the interaction
terms like we did in the reaction-diffusion equation and obtain the following
system:

∂m

∂t
= dm∇

[
v

(
v +m

∂v

∂m

)
∇m+ vm

∂v

∂a
∇a− κ∇∆m

]
+H(m, a)

∂a

∂t
= da∆a+G(m, a)
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Doing this however ignores an important ecological fact: the movement of the
mussels is much faster than that of the algae or their interactions. For instance
one can easily imagine that the mortality rate of mussels is much slower than
their movement. We want to incorporate this fact into the model and therefore
we write the system as a fast-slow system as

∂m

∂t
= dm∇

[
v

(
v +m

∂v

∂m

)
∇m+ vm

∂v

∂a
∇a− κ∇∆m

]
+ εH(m, a) (1.2a)

∂a

∂t
= εda∆a+ εG(m, a), (1.2b)

where 0 < ε � 1 is a very small constant, that emphasizes the slow terms.
Moreover, dm, da, κ > 0 are positive constants and κ is generally a small constant
(but still larger than ε).

In this description of the model as a partial differential equation we again need
to impose boundary conditions and initial conditions. Because of the addition
of a fourth order spatial derivative in this model, we also need another set of
boundary conditions as the previous set of no-flux boundary conditions was
not sufficient. For the last set of boundary conditions we therefore will use
the standard choice of boundary conditions for the Cahn-Hilliard equation on
a bounded domain (see Chapter 2) and hence we have the following set of
boundary conditions for this problem:

∇m · n̂ = 0 when x ∈ ∂Ω;

∇a · n̂ = 0 when x ∈ ∂Ω;

∇(∆m) · n̂ = 0 when x ∈ ∂Ω.

With this we have made the model that will be the subject of our study through-
out this thesis. In the next sections we will delve into the specific possibilities
for the interactions terms H and G for the specific mussel-algae system and the
possible forms of the density dependent movement speed that will serve as our
base example in the rest of this study.

1.1.3 Interaction terms for the Mussel-Algea system

The general model that we have created in equation (1.2) is - logically - not very
concrete. In this section we will inspect the most used forms of the interaction
terms H and G. To really understand what these interaction terms mean,
we must go back to the real situation and determine how we will model the
system. The interaction terms that we derive in this section are also found in
the literature [16, 17, 18].

For our system, with both mussels and algae, we immediately can understand
that they both live in water. Algae can flow in water, though mussels can only
be present at the bottom. Hence there will only be an interaction between
algae and mussels in the lower layer of water, where mussels and algae coexist.
To model this we will divide the water into two layers: the lower layer, of
depth h, that we will actually describe with our model, and an upper layer (see
Figure 1.1).

15



h

sediment/ground

lower layer

upper layer

ρ

aup

a
m

Figure 1.1 – Sketch of a side-view of the set-up for the model. The water is
divided into two parts: one lower layer, which is actually modeled in the equa-
tions, of depth h and an upper layer, where there is assumed to be a constant
concentration of algae aup (and no mussels). The algae flow from the upper layer
to the lower layer at a rate ρ.

It is assumed that there is a constant concentration of algae, aup, in the upper
layer. Because the upper layer is in contact with the lower layer it is possible
for algae to flow from the upper layer to the lower layer. The amount of algae
that flow in this way is proportional to the difference in concentration between
both layers and to some rate ρ. Hence we see that the concentration of algae in
the lower layer changes as ρ(aup − a). That is, the contribution of this effect,
the renewal/birth of algae, to the interaction term G is Gb where Gb is defined
as

Gb(m, a) = (aup − a)ρ.

Besides this renewal of algae there is also a decrease in algae because they are
being eaten by the mussels. This effect is generally seen as proportional to the
product of the concentration of algae and that of mussels; when there are more
predators more prey are eaten and when there are more prey to eat, more will
be eaten. This term, representing algae being eaten, is also proportional to
some constant c, the consumption constant, that describes how fast algae are
being eaten. Moreover, because we have modeled the lower layer as a layer of
depth h, the real consumption constant is only c

h since mussels only live on the
sediment. Therefore the contribution to the interaction term G due to eating
is:

Gd(m, a) = − c
h
ma

Since there are no other contributions to the interaction term G, we can now
write down the full expression for G, representing the change in the density of
algae as the following function:

G(m, a) = Gb(m, a) +Gd(m, a) = (aup − a)ρ− c

h
ma
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Figure 1.2 – Plots of the fraction d̂m
km

km+m
(a) and the mortality contribution

to the interaction terms (b).

The other interaction term, H, describes how the density of the mussels changes
due to the interactions. The first interaction that one can think of is the eating
of algae. Again this change is proportional to the product of densities ma and
the consumption constant c. However there is also a conversion rate - since one
mussel must eat many algae before it can and will reproduce. Hence we find
the contribution of this effect to the interaction terms as

Hb(m, a) = ecma

On the other hand, mussels will die as well. The amount of mussels that die
is proportional to the density of mussels and to some number, representing
the fraction of mussels that will be eaten. Since - as we have argued in the
introduction - mussels want to stick together as this gives them better chances
to survive, we must include this effect in our model here. That means that
the fraction of mussels that will be eaten must decrease when the concentration
increases.

The common choice - and one of the easiest in computations4 - for this fraction
is d̂m

km
km+m . Here d̂m is the maximal fraction (achieved when m = 0) and km

is the mussel density at which this fraction is only half of the maximal fraction.
A plot of this particular fraction is given in Figure 1.2. The corresponding
contribution to the interaction term is then

Hd(m, a) = d̂m
km

km +m
m.

A plot of this function is also given in Figure 1.2.

Hence at this moment we have all necessary information to formulate the complete
interaction terms, H and G. We have found and explained now that they must

4One could also think of many other models for this fraction, for instance an exponen-
tial one: e−m. This formulation has the same properties - it decreases when m increases.
Since working with exponentials is generally more cumbersome, people generally tend to work
around these.
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have the following form:

H(m, a) = ecam− d̂m
km

km +m
m (1.3a)

G(m, a) = (aup − a)ρ− c

h
am (1.3b)

Finally, from the way we have defined these interaction terms, we should remember
that all parameters in this description must be positive.

The interaction terms that we have derived in this section are applicable to both
the reaction-diffusion system (see equation (1.1)) and the model that includes
the density-dependent movement (see equation (1.2)). In Section 1.2, and later
in Chapter 3 we will use these interaction terms to study the specific mussel-
algae system.

1.1.4 Choices for the density dependent movement speed

The main focus point of our research comes from the addition of the density
dependent movement speed in our model. The specific form of this movement
speed is important, as this can influence the patterns that are predicted by the
model. Therefore we will discuss the possible choices to define this movement
speed, as function of the density of mussels and algae.

In the introduction we already saw the experimental data, that suggested the
density dependent movement (this graph is repeated in Figure 1.3). As we have
stated before the concentration of algae (i.e. food) is important as well [6]; if
there is much food available, the mussel don’t need to move that much to feed
themselves, while they need to move much when food is sparse.

In this section we will discuss two ways to model the movement speed, that we
will use later on in this thesis for simulations and analysis on the mussel-algae
system.

Figure 1.3 – Graph of the density dependent movement speed as observed in
mussels, when there are no algae [6]. The green dots are the data points.
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Possibility 1: Quadratic fit

Liu et al found - by emperical methods - that we can take the speed v of the
mussels to depend on m in a quadratic way [5], as an approximation. So they
use

v(m) = c1m
2 + c2m+ c3,

where c1, c2 and c3 are constants such that v(m) > 0 for all possible m ∈ R.

To incorporate the effect of the density of the algae, we need to figure out
how they contribute to this speed. As a first rule of thumb we can follow our
biological intuition: if there is much food available, the mussels don’t need to
move to feed themselves, whereas they need to move much when food is sparse.
Hence we would expect that v(m, a1) > v(m, a2) if and only if a1 < a2. Since
we do not know the explicit relation, we will for now assume that this effect is
linear in the algae concentration - as this is the simplest for our analysis. Hence
we assume that

v(m, a) = c1m
2 + c2m+ c3 − d1a,

where d1 > 0 is now an additional (positive) constant.

Since we want the speed to be always positive and since a higher concentration
of algae leads to a lower speed, we would expect to run into trouble as a→∞.
Luckily, there is an upper bound on the concentration of algae. In our model
(and most others; see [17] and [16]) for the mussel-algae system, it is assumed
that the concentration of algae can only be depleted in the lower section of the
water (where mussels live) and that reproduction occurs elsewhere.

Hence the only way for the algae concentration to increase is by a transportation
of algae from higher sections of water. This means that the concentration of
algae in the lower section cannot exceed the concentration at higher sections.
We will denote this concentration as aup. So we know that a ∈ [0, aup]. Thus
we know that v(m, a) ≥ v(m, aup) for all a ∈ [0, aup]. Hence in order to have a
positive speed of the mussels for all possible concentrations, we just need

v(m, aup) = c1m
2 + c2m+ (c3 − d1aup) > 0

for all possible mussel concentrations m.

To investigate for what parameters values that happens, we rewrite this by
completing the square as

v(m, aup) = c1

(
m+

c2
2c1

)2

− c22
4c1

+ c3 − d1aup

From this we know that v(m, aup) > 0 if

c1 > 0

c22 < 4c1(c3 − d1aup).

The second constraint can only be obeyed if c3 − d1aup > 0. So we also have
this as a condition. Hence to summarize: the speed of the mussels - in this
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description - is positive for all possible concentrations if and only if

c1 > 0 (1.4a)

c3 > d1aup (1.4b)

c22 < 4c1(c3 − d1aup). (1.4c)

To make life easier we can scale the densities m and a by defining M :=
√

c1
c2
m,

A := 1
aup

a and the new parameters β̃ := c2√
c1c3

and d̃ =
d1aup
c3

. With this scaling

it is possible to write the speed as

v(M,A) = c3

(
M2 + β̃M + 1− d̃A

)
.

Since the constant c3 now can be incorporated into the constants dm and κ (see
equation (1.2)), we can ignore this constant here and still have a good model
(i.e. take c3 = 1). Hence we will think of the ‘quadratic fit’ movement speed as
the following function of M and a:

vq(M,A) = M2 + β̃M + 1− d̃A

Because of the non-negativity of the speed we find the following condition on
the parameters β̃ and d̃, which can be derived directly from the conditions in
equation (1.4):

β̃2 < 4(1− d̃)

The concentration of mussels, M , and the concentration of algae, A, must be
non-negative, since a negative concentration is unphysical. Therefore we only
need to make sure that the function v is positive for non-negative concentrations.
Hence it is sufficient to put the following condition on the parameter β̃ to ensure
positiveness of the mussel’s movement speed:

β̃ > −2

√
1− d̃

Possibility 2: A piecewise-linear function

Previously we modeled the speed of the mussels via a quadratic approach. This
description is perhaps a bit too rough. From biological data [6] it seems that the
influence of the algae density is small when the mussel density is small and big
when the mussel density is high. This seems logical: sticking together decreases
the probability that an individual will be eaten, regardless of the availability
of food. The term −da does not take this into account and hence the previous
‘quadratic’ description ignores this fact. Therefore we now want to model the
speed in an other way, that takes this effect into account.

There is not enough experimental data to really see how we should define the
density dependent speed, as a function of both the density of mussels and that
of algae. Hence we must make a guess about the form. As suggested in the
previous paragraph, it seems that the concentration of algae only starts to play a
significant role when the density of mussels is high enough. We suspect that the
more food the slower the mussels will move. To make our formulation as simple
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v(M,A) Mturning
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Figure 1.4 – Schematic illustration of the density-dependent speed v(m,a), mod-
eled as piecewise linear function, For low mussel densities the speed is assumed
to not depend on the concentration of algae, whereas at higher densities more
algae means slower mussels.

as it can be, we will assume that the speed v(m, a) is piecewise linear, where
the slope of the righter part, for higher mussel densities, depends on the algae
concentration. In Figure 1.4 we have sketched the guessed density dependent
speed.

This piecewise linear approach will give us a description of the following form:

v(M,A) =

{
v1(M,A) when M < Mturning;

v2(M,A) when M > Mturning.

Since the quadratic fit approach of last section gave a minimum that depends on
the parameter β̃ it is logical to ensure that our piecewise-linear speed also has
this dependence. To resemble this we will put the density, which is the turning
point between low mussel densities and high densities (i.e. the dashed line in

Figure 1.4), at Mturning = β̃
2 .

At lower densities we want the speed to be linear (and decreasing). We will
simply put5

v1(M,A) = 1− β̃M.

Here β̃ > 0 because we want this line to decrease. Since we need the movement

speed to be positive, we find the condition 2−β̃2

2 > 0 on the parameter β̃.

For higher densities we want another linear function, of which the slope depends
on the local algae density. We also need to make sure that v1 and v2 line up at
the density Mturning. Hence we obtain the following form for v2:

v2(M,A) =
2− β̃2

2
+ γ̃(A)

[
M − β̃

2

]
,

where γ̃(A) is positive to ensure the positiveness of the movement speed.

5By a scaling, similar to the scaling before, we can transform the general formulation of a
movement speed to this form.

21



m

v(m, a)

Figure 1.5 – Plots of the piecewise linear function (blue) and the infinitely
smooth approximations, using K = 1

2
(green) and K = 1 (red). As can be

seen these smooth approximations resemble the piecewise linear function well.
Increasing K even more will give even better (smooth) approximations.

Since we want the speed to be (infinitely) smooth - to be able to differentiate
as necessary - we can use a mollification to define the speed, for example as

v(M,A) = v1(M,A) +
1 + tanh(K[M − β̃/2])

2
(v2(M,A)− v1(M,A))

where K ∈ R must be chosen large enough.

In the limit K →∞ we see that v(M,A) will become

vp(M,A) =

{
v1(M,A) = 1− β̃M if M < β̃/2;

v2(M,A) = 1−β̃2

2 + γ̃(A)
[
M − β̃/2

]
if M > β̃/2.

So if K is chosen large enough we can use the piecewise linear description as
a very good approximation (see Figure 1.5. Therefore we will work with this
piecewise-linear speed vp(M,A) in the analysis of this thesis.

The function A 7→ γ̃(A) gives the slope of the line v2. Since biological data
suggests that a high density of algae corresponds to a low slope and vice-versa,
we must choose γ such that it is a decreasing, positive function. The straight-

forward choice for this kind of function is γ(A) := γ0e
−d̃A where d̃ and γ0 > 0

are (new) parameters.

Summary of the possible choices for the speed

In this section we described two possible ways to model the density dependent
movement of the mussels, taking the effect of the algae’s concentration into
account. We have found a ‘quadratic fit’ approach with speed, which we will be
calling vq as

vq(M,A) = M2 + β̃M + 1− d̃A.

Here d̃ > 0 and β̃ > 2
√

1− d̃.
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We have also found a piecewise linear approach, which we will denote by vp.
This piecewise linear function for the speed has the following form:

v(M,A) =

{
v1(M,A) = 1− β̃M if M < β̃/2;

v2(M,A) = 1−β̃2

2 + γ0e
−d̃A

[
M − β̃/2

]
if M > β̃/2,

(1.5)

where 0 < β̃ <
√

2, γ0 > 0 and d̃ > 0.

1.2 A Reaction-Diffusion model for mussels

In the previous sections we introduced the possible Cahn-Hilliard like, density
dependent movement, description of the mussel-algae system. In this thesis we
want to study the effect of the addition of the density-dependent movement
speed to the model. Therefore it is necessary to first study the normally studied
model, of reaction-diffusion type that we have described in equation (1.1).
We will use the interaction terms that we have found in section 1.1.3 (see
equation (1.3)).

The complete reaction-diffusion model for the mussel-algae system then reads

∂m

∂t
= dm∆m+ ecam− d̂m

km
km +m

m

∂a

∂t
= da∆a+ (aup − a)ρ− c

h
am.

Recall that all the parameters must be positive. In this section we study this
system on a two-dimensional unbounded domain.

To reduce the amount of parameters that we need to consider, we can write
the differential equation in a dimensionless way. Therefore we introduce the
following scalings and new parameters:

τ = d̂m r =
ecaup

d̂m

(x′, y′) =

√
ckm
dah

γ̃ =
hd̂m
ckm

m = kmM α̃ =
ρh

ckm

a = aupA µ̃ =
dmckm

dahd̂m
.

Under this scaling the partial differential equation transform into the system

∂M

∂τ
= µ̃∆′M + rMA− M

1 +M
(1.6a)

γ̃
∂A

∂τ
= ∆′A+ α̃(1−A)−MA. (1.6b)

In the rest of the section we will drop the apostrophe and we will write τ as t
for notational convenience. Also note that the parameters, µ̃, γ̃, α̃ and r are all
(still) positive.
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This remainder of this section will be devoted to the analysis of this scaled
reaction-diffusion system. We will focus on the stability of the uniform sta-
tionary points, by applying standard linear stability analysis and later on also
weakly non-linear stability analysis. We will roughly follow Cangelosi et al [17],
though they used a Landau expansion to determine the patterns.

1.2.1 Uniform Steady States

Our first objective is to find the uniform steady states of the reaction-diffusion
equation (1.6). To do so, we are interested in solution with M(x, y, t) = Me and
A(x, y, t) = Ae. Hence we know that the time derivatives and the Laplacians
will vanish. Hence to find the uniform stationary states (Me, Ae) we must solve
the algebraic system

0 = rMeAe −
Me

1 +Me

0 = α̃(1−Ae)−MeAe

To solve the first condition we must have either (A) Me = 0 or (B) Me = 1−rAe
rAe

.
In case (A) we find the second condition reduces to α̃(1 − Ae) = 0. This gives
Ae = 1. In case (B) we find the second condition to be Aer(1−α̃)−(1−α̃r) = 0,
which gives Ae = 1−α̃r

r(1−α̃) . The first relation then gives the value for Me as

Me = α̃ r−1
1−α̃r .

So to summarize, we have found the following two (possible) uniform stationary
states of equation (1.6):

(i) (Me, Ae) = (0, 1);

(ii) (Me, Ae) =
(
α̃ r−1

1−α̃r ,
1
r

1−α̃r
1−α̃

)
.

However the system must be physical and thus we must have Me ≥ 0 and
Ae ≥ 0 because negative densities do not occur in reality. The stationary
state (Me, Ae) = (0, 1) is already physical, but the second one need not be.
Specifically, this stationary state is only physical when r − 1, 1− α̃r and 1− α̃
all have the same sign. It is easy to verify that all these terms are positive
when α̃ < 1 and r ∈

(
1, 1

α̃

)
. On the other hand all these terms are negative

when α̃ > 1 and r ∈
(

1
α̃ , 1

)
. In the next section we will discover that this non-

trivial steady state is (always) unstable when r < 1, which does not lead to any
interesting effects. Hence we will assume that we are dealing with the former
case, in which all terms are positive.

1.2.2 Linear Stability of the Uniform Stationary States

The following step in our analysis is to figure out the linear stability of the
uniform stationary states. In order to do this, we must first linearise the system
of equation (1.6). The Laplacians and the time derivatives are already linear
functionals. Hence we only need to linearise the interaction terms H(M,A) and
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G(M,A) around the fixed points (Me, Ae). Note that the interaction terms are
now the interaction terms in the rescaled system. Hence we have

H(M,A) = rMA− M

1 +M

G(M,A) = α̃(1−A)−MA.

We can now make a Taylor polynomial of these functions and hence find their
linearisations around the uniform steady state (Me, Ae) as

H(M,A) = H(Me, Ae) +

(
rAe −

1

(1 +Me)2

)
M + rMeA+ . . .

G(M,A) = G(Me, Ae)−AeM − (α̃+Me)A+ . . .

We want to study the linear stability of these stationary states that we found. In
order to do so we must investigate how the system reacts to small perturbations.
So we set (M,A) = (Me+δM̃,Ae+δÃ). Here 0 < δ � 1 is very small and M̃, Ã
are functions of both the time and the spatial coordinates. Because of the way
we have defined this, we know that |M−Me| is of orderO(δ) as is |A−Ae|. Hence
we can forget about the higher order terms in the Taylor polynomial we derived
before and hence acquire the linearisation of equation (1.6). Substitution of this
Ansatz into the linearized, rescaled reaction-diffusion equation then gives us the
following linear partial differential equation

∂M̃

∂t
= µ̃∆M̃ +

(
rAe −

1

(1 +Me)2

)
M̃ + rMeÃ (1.7a)

γ̃
∂Ã

∂t
= ∆Ã−AeM̃ − (α̃+Me)Ã. (1.7b)

We will now assume that (M̃, Ã) = ei
~k·~x+ω(~k)t(M̄, Ā) as a Fourier expansion.

Here ~x = (x, y) and M̄ and Ā are constants. In this expansion ~k = (kx, ky)
is the wavelength (in two dimensions) of the perturbation. In the following we

will determine the sign of real part of ω(~k) for the possible wavelengths ~k ∈ R2.

When Re ω(~k) < 0 we know that the wave with wavelength ~k will shrink over

time, whereas Re ω(~k) > 0 implies that the wave will grow. For linear stability

of the uniform stationary state, we need that Re ω(~k) < 0 for all wavelengths
~k as this implies that all small perturbations eventually will fade out and the
system returns to the stationary state (Me, Ae).

Substitution of such general Fourier expansion in the system of equation (1.7)
gives us the following system of (algebraic) equations:

ωM̄ =

[
−µ̃|~k|2 +

(
rAe −

1

(1 +Me)2

)]
M̄ + rMeĀ

γ̃ωĀ = −AeM̄ +
[
−|~k|2 − α̃−Me

]
Ā

This description is equivalent to the following matrix equation:

0 =

(
ω(~k) + µ̃|~k|2 −

(
rAe − 1

(1+Me)2

)
−rMe

Ae γ̃ω(~k) + |~k|2 + α̃+Me

)(
M̄
Ā

)
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It is easiest now to inspect the two possible steady states one by one, as this
simplifies the equations.

Linear stability of (Me, Ae) = (0, 1)

When we inspect the uniform steady state (Me, Ae) = (0, 1) we find the following
matrix equation:

0 =

(
ω(~k) + µ̃|~k|2 − r + 1 0

1 γ̃ω(~k) + |~k|2 + α̃

)(
M̄
Ā

)
(1.8)

Hence we obtain two values for ω: ω1(~k) = r−1− µ̃|~k|2 and γ̃ω2(~k) = −α̃−|~k|2.

Clearly ω2 < 0 for all wavelengths ~k ∈ R2. So this means that the uniform steady
state (0, 1) is stable if and only if ω1(~k) < 0 for all wavelengths ~k. This happens
when r < 1. On the other hand, when r > 1 we have ω1 > 0 and hence the
state is unstable in this situation.

Linear stability of the non-trivial steady state

For the second, non-trivial, steady state (Me, Ae) =
(
α̃ r−1

1−α̃r ,
1−α̃r
r(1−α̃)

)
we find

the following matrix equation

0 =

(
ω(~k) + µ̃|~k|2 − Me

(1+Me)2 −rMe

Ae γ̃ω(~k) + |~k|2 + α̃
Ae

)(
M̄
Ā

)
(1.9)

Here we have used that rAe− 1
(1+Me)2 = Me

(1+Me)2 and α̃+Me = α̃
Ae

which follow

from a straight-forward computation. In order for this matrix equality to hold
we find that ω(~k) must satisfy the following dispersion relation:

0 =

(
ω(~k) + µ̃|~k|2 − Me

(1 +Me)2

)(
γ̃ω(~k) + |~k|2 +

α̃

Ae

)
+ rMeAe

This dispersion relation can be expanded to the following form (for notational

clarity we have suppressed the notation of the argument ~k of the exponent ω):

0 =γ̃ω2 + ω

(
(1 + γ̃µ̃)|~k|2 + α̃/Ae − γ̃

Me

(1 +Me)2

)
+ µ̃|~k|4 + |~k|2

(
µ̃α̃/Ae −

Me

(1 +Me)2

)
+
α̃(r − 1)(1− α̃r)

1− α̃ (1.10)

We know the uniform steady state (me, ae) is stable when the two solutions for
ω of this dispersion relation both have negative real parts. Since γ̃ > 0, we
need the other coefficients to be positive as well in order for this to happen6.
This must hold for all possible values of the wavelength ~k. We inspect these
two remaining coefficients one by one.

6A quadratic form Ax2 + Bx+ C has roots x1,2 = − B
2A
± 1

2A

√
B2 − 4AC. When A > 0,

we need to have that B > 0 and B2 − 4AC < B2 in order to have two negative solutions.
Hence we must have that A,B,C > 0 to guarantee two negative solutions.
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The first coefficient is (1 + γ̃µ̃)|~k|2 − α̃/Ae + γ̃ Me

(1+Me)2 . Since (1 + γ̃µ̃) > 0 we

know that this terms is positive, for all possible wavelengths ~k, if and only if

α̃/Ae − γ̃
Me

(1 +Me)2
> 0. (1.11)

According to Cangelosi et al [17] this condition is satisfied for the typical values
of the parameters in our model. In the remainder we will just assume that this
condition is obeyed.

For the last coefficient we must be careful. We first investigate the condition
for ~k = 0. Then the condition simply is

α̃(r − 1)(1− rα̃)

1− α̃ > 0. (1.12)

In Section 1.2.1 we briefly mentioned that the non-trivial steady state is (always)
unstable when r < 1. We can now verify this from this condition: in this
situation we have (r − 1), (1 − α̃r), (1 − α̃) < 0 and hence the condition is
violated, meaning that the stationary state (Me, Ae) is unstable for perturbation

with wavelength ~k = 0 and hence unstable in general. When r > 1 there is no
problem and the stationary state is stable for perturbations with wavelength
~k = 0.

This does not, however, mean that the uniform stationary state (when r > 1)
is always stable. It can happen that this last coefficient is negative for some
wavelength ~k 6= 0. For stability this is not allowed and hence we find that the
stationary state is stable when the following inequality holds for all wavelengths
~k:

µ̃|~k|4 + |~k|2
(
µ̃α̃/Ae −

Me

(1 +Me)2

)
+
α̃(r − 1)(1− α̃r)

1− α̃ > 0

We can also write this as a condition on the parameter µ̃ as follows:

µ̃ >

Me

(1+Me)2 |~k|2 − α̃(r−1)(1−α̃r)
1−α̃

|~k|2
(
|~k|2 + α̃/Ae

)
=

Me

(1 +Me)2

|~k|2 − (1+Me)
2α̃(r−1)(1−α̃r)
Me(1−α̃)

|~k|2
(
|~k|2 + α̃/Ae

)
Upon noticing that (1+Me)

2α̃(r−1)(1−α̃r)
Me(1−α̃) = (1 − α̃) we can write this condition

more compactly as

µ̃ > µ̃c :=
Me

(1 +Me)2

|~k|2 − (1− α̃)

|~k|2
(
|~k|2 + α̃/Ae

) . (1.13)

In Figure 1.6 the curve µ̃c is shown as function of the squared (absolute value

of the) wavelength. The function µ̃c(~k) clearly has a maximum. Because the

condition on µ̃ that µ̃ > µ̃c(~k) for all wavelengths ~k, we can also reduce this to

the condition µ̃ > µ̃C := max~k∈R2 µ̃c(~k).
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|k|2

µ̃k

Figure 1.6 – Plot of the function µ̃c = me
(1+me)2

|~k|2−(1−α̃)
|~k|2(|~k|2+α̃/ae)

, where we have

used the parameter values Ae = 0.857, α = 2/3 and Me = 0.111. The uniform

stationary point (Me, Ae) is stable for perturbations with wavelengths ~k when

m̃u > µ̃c(~k) and unstable when µ̃ < µ̃c(~k).

In our quest to find the maximal value µ̃C we compute the derivative ∂µ̃c
∂|~k|2 (~k)

and set it to zero. Hence we find the following equation for the wavelengths ~kc
that maximize µ̃(~k):

0 =
−|~kc|4 + 2(1− α̃)|~kc|2 + (1− α̃)α̃/Ae

|~kc|4
(
|~kc|2 + α̃/Ae

)2 (1.14)

With use of the quadratic formula we can easily verify that the maximizers are
given by

|~kc|2 = (1− α̃)
(

1±
√

(1− α̃r)−1
)
.

Since we are only inspecting the situation in which we have 1 < r < α̃−1 and
0 < α̃ < 1 (see Section 1.2.1), we have

√
(1− α̃r)−1 > 1. Hence we must ignore

the solution with a negative sign, because the absolute wavelength cannot be
negative. Hence the (true) maximizers ~kc must obey the equation

|~kc|2 = (1− α̃)
(

1 +
√

(1− α̃r)−1
)
.

Substitution of this maximizer in the equation for µ̃c then gives the value of the
maximum µ̃C . For this we obtain

µ̃C =
Me

(1 +Me)2

|~kc|2 − (1− α̃)

|~kc|2
(
|~kc|2 + α̃/Ae

)
=

Me

(1 +Me)2

√
(1− α̃r)−1

(1 +
√

(1− α̃r)−1)(1− α̃)
(

1 +
√

(1− α̃r)−1 + α̃r/(1− α̃r)
)

=
Me

(1 +Me)2

1

(1− α̃)
(
2 + 2

√
1− α̃r + α̃r/(1− α̃r)

)
=

Me

(1 +Me)2

1

2|~kc|2 + α̃
Ae

.
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So we know that the uniform stationary point (Me, Ae) =
(
α̃ r−1

1−α̃r ,
1
r

1−α̃r
1−α̃

)
is

(linearly) stable when µ̃ > µ̃C = Me

(1+Me)2
1

2|~kc|2+α̃/Ae
. When µ̃ < µ̃C this point

is unstable for perturbations of some band of wavelengths around ~kc. When
the parameters are chosen in such way that the stationary state (Me, Ae) is
linearly unstable, but µ̃ is close to µ̃C we expect to see patterns arise from this
stationary state. In the next section we will use weakly non-linear stability
analysis to study this option in-depth.

1.2.3 Weakly Non-Linear Stability Analysis

In the last section we have determined the linear stability of the non-trivial

stationary state (Me, Ae) =
(
α̃ r−1

1−α̃r ,
1
r

1−α̃r
1−α̃

)
. We have found that this state is

linearly stable when µ̃ > µ̃C and unstable when µ̃ < µ̃C . In this section we will
determine what happens to the state (Me, Ae) when µ̃ − µ̃C < 0 via means of
a weakly non-linear stability analysis. We don’t inspect the other steady state,
(0, 1), since there are no mussels in this steady state and therefore does not lead
to patterns in the mussel concentration.

We let µ̃ = µ̃C − ε2s, where s > 0 and 0 < ε� 1. This choice now ensures that
µ̃ < µ̃C , but it is still close to the critical value of the parameter. Our linear sta-
bility analysis predicts that in this situation the stationary state (Me, Ae) is un-

stable and that the wavelengths ~kc that obey |~kc|2 = (1− α̃)
(

1 +
√

(1− α̃r)−1
)

are the most unstable ones (i.e. ω(~kc) ≥ ω(~k) for all wavelengths ~k when
µ̃ = µ̃C). Hence the deviation from the stationary state will be dominated by
this wavelength.

In the remainder of this section we will restrict ourself to one-dimensional spatial
domains. This hugely simplifies the computations and still will give us some clue
about the patterns that can arise. The critical wavelengths kc ∈ R (there are
now two of them) now satisfy

k2
c = (1− α̃)

(
1 +

√
(1− α̃r)−1

)
(1.15)

This critical wavelength dominates the perturbations of the stationary state
(Me, Ae) and we will use the Ansatz that the solution (M,A) of equation (1.6)
- with µ̃ as stipulated before - has the following form(

M
A

)
=

(
Me

Ae

)
+ ε~v11A(ξ, τ)eikcx + c.c.+ h.o.t. (1.16)

Here kc is the critical wavelength, ~v11 is a vector pointing in the most unstable
direction (i.e. the eigenvector corresponding to the eigenvalue 0 = ω(kc) when
µ̃ = µ̃c). A is some complex-valued function of τ and ξ, which in turn are the
slow space and time variables. The explicit form of τ and ξ in terms of the
original space and time variables x and t is at this point still to be determined.
Also, c.c. means that we also have complex conjugates and h.o.t. means that
there are also higher order terms (both in the Fourier and in the Taylor series).

The derivation of the modulation equations is quite complicated and tedious.
The complete computation can be found in Appendix A. These calculations
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show that the relevant amplitude equation for this reaction-diffusion mussel-
algae system is given (after some additional rescaling) by

Aτ = −A−Aχχ − h|A|2A.

where the sign of h is determined by the precise values of the original reaction-
diffusion system. In Appendix C we study the real Ginzburg-Landau equation
in detail. For now, we will just observe that this leads to patterns only when
h < 0. Hence only for some specific combinations of parameters there will be
patterns. These patterns will have the form

(M,A) = (Me, Ae) +A(εx, ε2t)eikcx + c.c.

where A is the amplitude, which is a solution to the Ginzburg-Landau equation
that we have derived in this section. When h < 0 this amplitude will have the

form A =
√

1−q2

h eiqx where |q| < 1. Hence the solution to the original partial

differential equation will be of the form

(M,A) = (Me, Ae) +A0e
i(kc+εq)x + c.c.

This means that a solution will resemble waves of the critical wavelength kc,
though they differ by a little amount. A sketch of a possibility is given in
Figure 1.7. Hence we can conclude that the reaction-diffusion equation already
gives rise to patterns. Thus the density-dependent movement speed of the mus-
sels is not necessary to explain all sort of patterns that can arise in a mussel
bed.

However, the patterns that arise due to the density-dependent movement speed
of the mussel are created in a very short time and generally have a far lower wave-
length, whereas the Turing patterns in the reaction-diffusion equation typically
have larger wavelengths. When we look at real mussel beds, one can see that
there essentially are patterns of different wavelengths. When you zoom out, you
can observe patterns with a typical length in the order of tens of metres and
when you zoom in, you can see patterns with a length of a few mussels. There-
fore we expect that the first of these can be seen as Turing patterns, whereas
the others arise due to the density-dependent movement speed. In Chapters 2
and 3 we study the behaviour of the system with a density-dependent movement
speed and see if we can also observe these new patterns in our mathematical
model.

x

M

Figure 1.7 – Sketch of a possible wave that can occur as a pattern of a reaction-
diffusion kind of equation with the Ginzburg-Landau equation as amplitude
equation.
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Chapter 2

ε = 0 - A study of the
Cahn-Hilliard Equation

In Chapter 1 we have postulated a mussel-algae system that incorporates a
Cahn-Hilliard structure on short timescales and a diffusion-interaction structure
for large timescales. This model is given by the following set of equations:

∂m

∂t
= dm∇

(
v

[
v +m

∂v

∂m

]
∇m+ vm

∂v

∂a
∇a− κ∇(∆m)

)
+ εH(m, a)

∂a

∂t
= ε[da∇a+G(m, a)]

The ε in this description indicates that some terms only contribute on larger
time scales. These terms represent phenomena like the mortality of the mussels
and the diffusion of the algae. On shorter time scales these effects are not
significant in the dynamics of the system. It is found that the behaviour of
mussels, kept in a small box for several hours, can be described using the Cahn-
Hilliard equation [5] .

We can study this situation by setting ε = 0 in our model. Our proposed system
of partial differential equations can thus be rewritten to:

∂m

∂t
= dm∇

(
v

[
v +m

∂v

∂m

]
∇m+ v

∂v

∂a
∇a− κ∇(∆m)

)
∂a

∂t
= 0

This means that at short time scales we would expect the concentration of algae
to be constant in time. Note that this concentration is not necessarily uniform
in space per se. We will, however, assume that this concentration of algae
is uniform in space during this chapter. With this additional assumption the
description reduces to

∂m

∂t
= dm∇

(
v

[
v +m

∂v

∂m

]
∇m− κ∇(∆m)

)
. (2.1)
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This is precisely the description that is given in [5]. In the article the speed
v of the mussels is taken to be v(m) = m2 + β̃m + 1, whereas we work with
v(m) = m2 + β̃m+ 1− da (or the piecewise linear definition, see section 1.1.4).
Since we have assumed that a is uniform in space and we have found it to be

constant in time, a simple rescaling m̄ = m√
1−da , β̄ = β̃√

1−da gives that these

descriptions are qualitatively similar in this situation where the concentration
of algae is assumed to be uniform.

In this chapter we will start with a general study of the Cahn-Hilliard system.
For this we will not use our specific found form of equation (2.1), but we analyse
the more general form

∂m

∂t
= dm∇(f(m)∇m− κ∇(∆m)). (2.2)

In Section 2.1 we’ll study the linear stability of the uniform solutions of this
equation. Moreover, we’ll see what kind of stationary solutions are possible
in one dimension. We also give the description of the global minimizer of the
associated energy as found by Carr et al. These considerations are given as a
summary of the current knowledge of the Cahn-Hilliard equation (see [19], [20],
[21] and [22]).

The last part of Section 2.1 is devoted to the specific mussel system as given
in equation (2.1), on a bounded domain [0, L] ⊂ R with natural boundary
conditions mx(0) = mx(L) = 0, mxxx(0),mxxx(L) = 0. In that, we consider
both introduced descriptions for the density dependent movement speed v(m) as
introduced in Section (1.1.4) and describe the bifurcation diagrams illustrating
the possible behaviour of the Cahn Hilliard equation.

Then in Section 2.2 we inspect one interesting phenomena of the Cahn-Hilliard
equation: Ostwald Ripening. This is a very slow process that qualitatively
describes the dynamics of solutions of the Cahn-Hilliard Equation. It is this
process that could explain the wavelength selection that is observed in experi-
ments with mussels.

Finally in Section 2.3 we continue to study the Cahn-Hilliard equation for our
mussel system, though this time via numerical methods. Here we present one-
dimensional simulations for both possibilities of the density dependent movement
speed. These simulations illustrate the analytically obtained knowledge of the
previous sections and give a good illustration of what happens in the system.

2.1 Cahn Hilliard Equation: general behaviour

The Cahn-Hilliard equation is a special sort of a gradient system. In general
such a gradient system can be expressed as

∂m

∂t
= ∇2µ(m),

where m is a concentration (for example of mussels) and µ is a chemical po-
tential, which is just a function of the concentration m. For the Cahn-Hilliard
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description this chemical potential is the operator defined as

µ(m) = F (m)− κ∇2m.

Here F is some known function of the concentration m. The Cahn-Hilliard
equation in its standard form is formulated as

∂m

∂t
= ∇2

[
F (m)− κ∇2m

]
. (2.3)

It is immediately clear that we can also write this Cahn-Hilliard equation in
the form of equation (2.2) when we define f(m) := dF

dm (m). Note that is also
possible to include an additional constant, dm, before the differential operator,
as we have done in equation (2.2).

In this section we focus on the dynamics of the Cahn-Hilliard equation in a
closed system. The domain of the system will be denoted by Ω. This domain
Ω can in general be a subset of Rn, though we will be particularly interested in
the one and two dimensional cases.

The mathematical formulation of the system is not yet complete: we need to
impose boundary conditions. Since we want to investigate a closed system, we
need to choose these such that no matter escapes. Therefore we need to have
mass conservation. This means that no concentration may flow in or out of the
systems boundaries. Thus one boundary condition is

∇m · n ≡ 0 on ∂Ω,

where n is a vector normal to the boundary.

This condition is however not sufficient to accommodate the wanted mass con-
servation. To see this we first observe that the total mass is M :=

∫
Ω
mdx. For

mass conservation we need to find dM
dt = 0. With integration by parts1 one finds

0 =
dM

dt
=

∫
Ω

∂m

∂t
dx =

∫
∂Ω

∇
[
F (m)− κ∇2m

]
· ndx

=

∫
∂Ω

f(m)∇m · ndx−
∫
∂Ω

κ∇(∆m) · ndx.

Therefore we also need to have ∇µ · n ≡ 0 on ∂Ω. Or, equivalently, we can also
reformulate this to the boundary condition

∇(∆m) · n ≡ 0 on ∂Ω.

Since we have chosen our boundary conditions such that the mass is conserved,
we also need to specify what this total mass is - that is the total mass is de-
termined by the initial distribution as M =

∫
Ω
m0dx where m0 is the initial

configuration. With this additional constraint, which is normal for system with
Neumann boundary conditions, it has been shown in [23] that it has (unique)
solutions.

1We are also implicitly assuming the domain Ω is constant in time.
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Thus the Cahn-Hilliard system on a bounded domain Ω with natural boundary
conditions can be formulated as

∂m

∂t
= ∇2

[
F (m)− κ∇2m

]
in Ω, (2.4a)

∇m · n ≡ 0 on ∂Ω, (2.4b)

∇(∆m) ≡ 0 · n on ∂Ω. (2.4c)

M =

∫
Ω

m dx =

∫
Ω

m0 dx. (2.4d)

This equation is also often formulated as a variational problem. To do this, we
can introduce the free energy of a point as

ef := W (m) +
κ

2
|∇m|2,

where W is some function such that W ′ = F . Now the (free) energy of the
whole system is

E :=

∫
Ω

efdx.

The original partial differential equation can be written in this formulation as

∂m

∂t
= ∇2 δef

δm
.

Here
δef
δm is the functional derivative of ef .

When we are looking for steady states, we can now choose which method we
want to use. We can either try to solve the original partial differential equation
or we can try to find extreme points of the energy functional. When these
extreme points are minimizers we also (additionally) know that these are stable
steady solutions of the Cahn-Hilliard equation, whereas they are unstable when
they are maximizers of the energy functional. In this chapter we sometimes
switch between those two approaches to make use of the advantages of both
methods.

2.1.1 Steady states

Our first interest is in the steady states of the Cahn-Hilliard equation. For this
we can set ∂m

∂t = 0 in equation (2.4). Thus to find the steady state solutions we
must solve

0 = ∇2
[
F (m)− κ∇2m

]
,

with the boundary conditions ∇m · n ≡ 0,∇(∆m) · n ≡ 0 on ∂Ω.

We will inspect the steady state solutions of this equation only in one dimension,
where we assume that Ω = [0, L]. Then by integrating twice we obtain the
following implicit expression for those steady state solutions:

F (m)− κmxx = C + C1x,
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where the subscripts x denote the derivative with respect to x. Moreover, C
and C1 are two constants whose values are yet undetermined. By differentiation
of both sides of this expression we find that

C1 = F ′(m)mx − κmxxx

Therefore we can apply the boundary conditions to find that C1 = 0. Hence
the correct expression for the steady state solutions is

F (m)− κmxx = C, (2.5)

where C is still not determined. We also note that steady state solutions should

satisfy the mass constraint M =
∫ L

0
m(x)dx. So our quest now is to find

all possible constants C and functions x 7→ m(x) that satisfy the differential
equation (2.5) and the mass constraint.

To do so we introduce v := mx and rewrite the differential equation into a
system of ordinary differential equations as{

mx = v

vx = F (m)−C
κ

(2.6)

The steady states of this system can be easily be found as (m, v) where m
satisfies F (m) = C and v = 0. How many solutions there exist, depends on the
form of the polynomial F (m) and the value of the constant C.

For our mussel model it turns out - as we shall see later in this chapter - that
there are two different forms possible for the polynomial F (m):

(i) F (m) is a (fifth order) polynomial that is increasing.

(ii) F (m) is a (fifth order) polynomial that has two extreme values m1 and
m2. It is decreasing when m ∈ (m1,m2) and increasing otherwise.

We will study both of these possibilities one by one in the next two subsections.

Phase Plane - for F monotonically increasing

When F is an increasing function we will always find only one solution to
F (m) = C, regardless of the value of C. Thus we will find one steady state
solution to the system (2.6). Its eigenvalues are λ1,2 = ±

√
f(m)/κ, which indi-

cates that this solution is a saddle. A sketch of a possible phase plane is given
in Figure 2.1.

Steady state solutions to the Cahn-Hilliard equation are now those orbits of
length L of the system in equation (2.6) that start on the line {v = 0} and
end on {v = 0} and also satisfy the mass condition. From the phase plane in
Figure 2.1 it is clear that the steady state is the only possible candidate. The
mass condition then determines that the steady state solution to the Cahn-
Hilliard equation must be m(x, t) = M/L (and thus C = F (M/L)).

Thus the Cahn-Hilliard system has only one steady state solution when F is
strictly increasing. This is the uniform steady state m(x, t) = M/L. So when
we start with some initial distribution m(x, 0) = m0(x) we know for sure that
eventually it will evolve to the uniform steady state M/L.
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m

v

Figure 2.1 – Sketch of a possible phase plane when F is an increasing function.
The red, dotted lines denote the nullclines, while the blue lines indicate some of
the orbits. The steady state is given in green.

Phase Plane - F has two extreme points

The second form that is of our interest is the function F that has two extreme
points m1 and m2 such that:

� F is increasing on [0,m1) and (m2,∞);

� F is decreasing on (m1,m2).

A sketch of a possible function F is given in Figure 2.2. It is clear that the
number of steady states of the system of equation (2.6) depends on the value of
the constant C. Let Clow be the local minimum and Cup the local maximum of
the function F . When C < Clow or C > Cup we clearly have only one solution.
In these cases the steady states are saddles and the phase plane looks like it did
before (see Figure 2.1).

m

F (m)

Cup

Clow

m1 m2

Figure 2.2 – Sketch of a function F that satisfies the assumptions that it has
two extreme points, between which the function is decreasing. The dashed, blue
lines indicate the upper and lower limits of the constant C such that F (m) = C
has three solutions.
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(a)

m

v

(b)

m

v

(c)

Figure 2.3 – Sketches of the three possible, qualitatively different, phase planes
when C ∈ (Clow, Cup). In (a) we have a homoclinic orbit to the point (ma, 0),
in (b) we have two heteroclinic orbits and in (iii) we have a homoclinic orbit
connecting (mc, 0) to itself.

However, when we choose C ∈ (Clow, Cup) we have three solutions to the
equation F (m) = C. We will denote these three solutions with ma < mb < mc.
Clearly F ′(ma) = f(ma) > 0, f(mb) < 0 and f(mc) > 0. Therefore the steady
states (ma, 0) and (mc, 0) are saddles and (mb, 0) is a center.

In order to be able to give a qualitative description of the dynamics of the
system of equation (2.6) in these situations we need more information. We can
acquire this by noting that this system is integrable and that we can define the
Hamiltonian

H(m, v) = W (m)− Cm− κ

2
v2,

where W (m) :=
∫m

F (m)dm.

Since the value of the Hamiltonian is constant along solutions this already im-
plicitly gives an expression for the steady states solutions of the Cahn-Hilliard
equation. In [24] this relation is used to find explicit forms of the steady states
in case F is a polynomial of fourth order. However in our situation F is of fifth
order and this method won’t work anymore.

However we can say something qualitatively about the phase plane. For this
we must distinguish between the three situations (i) H(ma, 0) < H(mc, 0), (ii)
H(ma, 0) = H(mc, 0) and (iii) H(ma, 0) > H(mc, 0). In situation (i) there is a
homoclinic orbit from (ma, 0) to itself, in situation (ii) there are two heteroclinic
orbits connecting (ma, 0) and (mb, 0) and in situation (iii) there is a homoclinic
orbit connecting (mb, 0) with itself. These three possibilities are sketched in
Figure 2.3.

Situation (ii) with two heteroclinic orbits occurs when H(ma, 0) = H(mc, 0).
Thus that means that we need C such that W (ma) −W (mc) = C(ma −mc).
We denote this value by Cm. We will for now assume that Cm is uniquely
determined in this matter, which is something we will see later in this chapter.
When C > Cm we have H(ma, 0) < H(mc, 0) and when C < Cm we have
H(ma, 0) > H(mc, 0).

In all of these possible situations we thus find heteroclinic or homoclinic orbits.
Besides these solutions we find three stationary solutions (i.e. (ma, 0), (mb, 0)
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and (mc, 0)). Finally there are also (infinitely) many periodic solutions, enclosed
by the heteroclinic (or homoclinic) orbits.

However not all of these solutions are really steady state solutions of the Cahn-
Hilliard equation because they not necessarily satisfy the imposed boundary
conditions and the mass condition. These conditions are only met when an
orbit starts at the line {v = 0} when x = 0 and ends on the line {v = 0}
when x = L. Moreover such a solution should also satisfy the mass condition

M =
∫ L

0
mdx.

Let’s now define me := M/L (i.e. a uniform state). Clearly this state is a steady
state of the Cahn-Hilliard equation (we can choose C = F (me)). There are now
two different scenarios2: (i) F (me) ∈ (Clow, Cup) or (ii) F (me) /∈ (Clow, Cup).

In situation (ii) we find that all non-uniform solutions won’t satisfy the mass
condition. Let’s assume F (me) < Clow (the argument for F (me) > Cup is
similar). That means that periodic orbits can only exist for C values such
that me < ma < mb < mc. Since the periodic orbits and heteroclinic and
homoclinic have m(x) ≥ ma for all x we find that the mass of these orbits is
too large. Therefore in this situation we will only find one steady state, being
m(x, t) = me.

From our analysis thus far we can only say something about the possible steady
states in situation (i): we have seen that there are four possible sort of steady
state solutions:

1. The uniform steady state me = M/L;

2. A periodic orbit;

3. One (or more) homoclinic connection(s);

4. One (or more) heteroclinic connection(s);

For all of these solutions we need to have C ∈ (Clow, Cup) and we also of course
need the mass constraint to be satisfied. In [19] it is shown that (only) solutions
of the fourth kind (i.e. one heteroclinic connection) are the global minimizers
of the related variational problem. In the next section we will reformulate the
reasoning of that article. We should now emphasize that this fact alone does not
mean that a solution always will tend to this heteroclinic connection necessarily,
as the other solutions could in theory be local minimizers of the problem (and
hence stable solutions as well).

2.1.2 Global minimizer of the energy

In the previous section we have studied the Cahn Hilliard equation using its
differential form. We have already found a lot of information about the steady
states of the system. In this section we now turn to the variational form and
use that to determine the form of the global minimizer, following the reasoning
by Carr et al [19].

2We could indeed also have F (me) = Clow or F (me) = Cup but we ignore these situations
for now
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At this point we recall the variational form of the Cahn Hilliard equation. In
this form we are looking for a function m that minimizes the energy

E =

∫ L

0

(
W (m)− κ

2
|mx|2

)
dx,

under the mass constraint

M =

∫ L

0

mdx

Finally we also need to make sure that the found minimizer m satisfies the
boundary conditions mx(0) = mx(L) = 0 and mxxx(0) = mxxx(L) = 0. Since
we are not interested to the precise functional setting, that is needed for many
existence and uniqueness theorems, we won’t give the precise functional analytic
setting - the given description is sufficient for our understanding of the system.

At this point we also must observe that the constant κ is usually very small
(compared to the size of the domain). Therefore it is logical to investigate the
system in the extreme limit when κ→ 0. Setting κ = 0 in the energy description
gives a variational problem: we need to find the appropriate function m that

minimizes the energy
∫ L

0
W (m) dx under the mass constraint M =

∫ L
0
m dx.

This setting - i.e. finding minimizers of a functional under a constraint - means
that we need to introduce a Lagrange multiplier σ and find the appropriate
function m and constant σ that minimizes the new functional

Ẽ(σ,m) =

∫ L

0

(W (m)− σm) dx.

The minimizer of this functional Ẽ must satisfy the Euler-Lagrange equation,

F (m) = σ.

This means that minimizers must be constant when σ /∈ (Clow, Cup) and that
minimizers can jump between ma,mb and mc when σ ∈ (Clow, Cup). However
a function that jumps between various states can only be a good solution to
our variational problem when it also satisfies the Weierstrass-Erdman corner
condition at the jumps in m:

W (m)− σm must be continuous across jumps in m.

These two conditions give rise to two sort of solutions. We either find constant
solutions m(x) = me or piece-wise constant solutions with m(x) ∈ {ma,mc}
where W (ma) −W (mc) = Cm(ma −mc), Cm = F (ma) = F (mc). Note that
Cm here is precisely the same constant as we had found in the previous section
that gave rise to a heteroclinic connection3.

For the single-state solution it is clear that the mass constraint can only be
satisfied when m(x) = me = M/L. The two-phase solution, on the other hand,

3The condition on Cm can also be written as
∫mc
ma

(F (m)− Cm) dm = 0, where we have

ma < mb < mc as solutions to F (m) = Cm. Thus this constant Cm must be chosen to be
the Maxwell line, explaining the subscript m. We can also see from this that Cm is uniquely
determined.
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satisfies this constraint when maS(ma) + mbS(mb) = M where S(ma) and
S(mb) are the measures of the space on which the solution m has the value ma

or mb respectively. Thus from this analysis it is also clear that the two-phase
solution can only exist when F (M/L) ∈ (Clow, Cup), which is in agreement with
our findings in the previous section.

Note that - in the two phase solution - it is possible to have infinitely many jumps
from state ma to mc. However, those infinitely many jumps can only exist in
our limit case κ ↓ 0, because there is no energy penalty for those interfaces.
When we inspect κ > 0 we introduce such an energy penalty for interfaces.
Therefore one expects to find a two-phase solution with only one interface to
have the least possible energy for the system. That is, a solution of the form4

m0(x) =

{
ma 0 ≤ x < L(mc−me)

mc−ma ;

mb
L(mc−me)
mc−ma < x ≤ L.

We note that, when κ > 0, the interfaces cannot be discontinuous (as otherwise
taking the derivative does not make sense). So to be more precise, the two-
phase solution, has m(x) = ma on one side and m(x) = mc on the other, with
a transition from one state to the other. This transition from one state to
the other must be a stationary solution to the Cahn-Hilliard equation. In the
previous section we have found two heteroclinic orbits, connecting the states
ma and mc. Therefore one of these orbits must describe the transition from ma

to mc (and the other describes the transition from mc to ma in the mirrored
solution). A sketch of this two-phase solution is given in Figure 2.4.

In [19] it is shown that a two-phase solution is - indeed - the global minimizer of
the energy functional, associated to the Cahn-Hilliard equation in case F (me) ∈
(Clow, Cup) when κL2 is small enough. That means that m0 is the energetically
favorable state and that m0 also is a stable steady state solution to the Cahn-
Hilliard (differential) equation. It does not, however, mean that all solutions
will eventually tend to this steady-state solution m0 as there could be other,
local, minimizers.

2.1.3 Linear stability of uniform steady state

In the previous sections we found several possible stationary solutions to the
Cahn-Hilliard equation. We have however not yet discussed their stability. Some
of these steady state solutions will probably be unstable and others stable. In
this section we briefly discuss the stability of the uniform steady states.

In general we can find the linear stability of a stationary solution by linearizing
the differential equation around this solution. Thus, now, let’s assume that m̄
is a stationary solution to (2.3). To find the desired linearization we now let
m(x, t) = m̄(x) + v(x, t) where v is a small perturbation. Hence the linearized
version is

∂v

∂t
= [f(m)v − κvxx]xx, (2.7)

4or the associated mirrored solution m0,mirrored(x) = m0(−x)

40



0 L

x

m(x)

Figure 2.4 – Plot of a possible global minimizer of the Cahn-Hilliard problem.
The location of the transition depends on the mass condition. The specific form
of the transition (e.g. how fast the solution decreases) depends on the form of F
and the value of κ.

where v should also satisfy the boundary conditions vx(0) = vx(L) = 0 and

vxxx(0) = vxxx(L) = 0 and the mass conservation 0 =
∫ L

0
v dx to ensure that

M =
∫ L

0
m dx still holds.

We determine the linear stability by setting v = eωt cos(kx), where we have used
the cosine, to make sure that v can (possibly) satisfy the boundary conditions.
We are interested in the linear stability of the uniform steady state solutions
me = M/L. In this situation we can find the following dispersion relation

ω(k) = −k2
[
f(me) + κk2

]
The uniform steady state me is now linearly stable when ω < 0 for all possible
wavelengths k. We can easily see that ω < 0 for all k ∈ R when f(me) > 0.
When f(me) < 0 there is a wavelength k1 > 0 such that f(me) + κk2

1 = 0 and
therefore such that ω(k1) = 0. Now all wavelengths in the range (−k1, 0)∪(0, k1)
correspond to ω > 0 and thus the uniform stationary state is linearly unstable
under perturbations with these wavelengths. The eigenvalue curve is given in
Figure 2.5.

k

ω(k)

k1−k1

Figure 2.5 – Sketch of the eigenvalue curve when f(me) < 0. We see that there
is a range of wavelengths for which the eigenvalue is positive.
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So this reasoning seems to suggest that the uniform stationary state me = M/L
is linearly unstable when f(me) < 0. We are however working on a finite
domain. Therefore the perturbation v needs to satisfy the boundary conditions.
This puts some restrictions on the possible wavelengths k: we need to have
kL = nπ where n ∈ Z. So that means that the uniform stationary state me

is only linearly unstable when f(me) < 0 and k1 > π/L. When this last
inequality does not hold, the domain is too small for the unstable waves to fit
in and therefore the system maintains its stability.

Note that k1 can be explicitly found as k1 =
√
−f(me)

κ . Therefore we can also

write the condition k1 > π/L as the following condition on the value of f(me):

f(me) < −
κ

L2
π2

So from this it is clear that the stationary state me = M/L is only linearly
unstable when f(me) < 0 and κ

L2 is small enough. That is, the domain has to
be large enough, compared to the value of κ.

In the limit κ/L2 ↓ 0 the condition for linear instability becomes f(me) < 0.
That means that F must be decreasing at me. In a previous section we worked
with two sort of functions F : (i) a function F where F is strictly increasing and
(ii) a function where F was increasing on (0,m1) and (m2,∞) and decreasing
on (m1,m2) for some m1,m2 ∈ (0,∞). Therefore we now know that only in
situation (ii) we will find that the uniform steady states me can be linearly
unstable - and that happens precisely when me ∈ (m1,m2). This region is often
called the spinodal region in the literature.

2.1.4 Stability of all stationary solutions

In section 2.1.1 we have found four kind of stationary solutions:

� Uniform stationary states;

� Periodic orbits;

� A homoclinic connection;

� A heteroclinic connection.

In section 2.1.2 we have argued that the heteroclinic connection corresponds
to the global minimizer of the associated energy. Therefore this stationary
solution must be stable. Moreover, in section 2.1.3 we have determined the linear
stability of the uniform stationary solutions and found out they are unstable
when f(me) < 0 (and the domain is large enough).

However, we have not yet talked about the other stationary solutions - i.e.
the periodic orbits or the homoclinic connections. In theory we could use the
linearized differential form of equation (2.7) - this time linearized around the
periodic orbit or homolinic orbit. For this we need the exact, closed form of
those orbits. Unfortunately this is too difficult in most cases, including our
mussel model.
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L

A

(a) F (me) /∈ (Clow, Cup)

L

A

(b) F (me) ∈ (Clow, Cup),me /∈ (m1,m2) (metastable region)

L

A

(c) F (me) /∈ (Clow, Cup) (spinodal region)

Figure 2.6 – Sketches of the conjectured bifurcation planes for the paramters L
and A = mmax − mmin in the three different regions. The green areas denote
stable solutions, while the red regions indicate unstable solutions.

In section 2.1.1 we have found the existence of periodic orbits (and homoclinic
orbits) when C ∈ (Clow, Cup). For these periodic orbits to be stationary solu-
tions to the Cahn-Hilliard equation (with boundary conditions) they need to
start at the line {v = 0} and end on this line {v = 0}, while the length of the

orbits must be L and the mass condition M =
∫ L

0
m dx must be satisfied.

By inspection of the phase planes of Figure 2.3 we see that each periodic orbit
crosses the line {v = 0} twice during its orbit. We can now characterize the
type of periodic solution to the Cahn-Hilliard equation by looking how many
times this solution crosses the line {v = 0} when x ∈ (0, L). Let’s define this
amount of times as the amount of transitions. It turns out to be possible to
always find a stationary solution to the Cahn-Hilliard equation, for any given
amount of desired transitions (see [19]).

As of 2015 there is not yet a clear understanding of the stability of all possible
solutions, including the periodic and homoclinic orbits. The most thorough
study that we know of is done in [19] where it is proven that solutions with
transitions in the open interval (0, L) will not be minimizers of the associated
energy of the Cahn-Hilliard system. Therefore these kind of solutions will be
unstable.
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When there are no transitions in (0, L) no general information is available.
However, it is generally believed (see for example [20]) that only a few of those
solutions are stable. Here there is made a distinction between the following three
regions: (i) me ∈ (m1,m2), (ii) me ∈ {m /∈ (m1,m2) : F (m) ∈ (Clow, Cup)}
and (iii) F (me) /∈ (Clow, Cup). Normally the results are given as a bifurcation
diagram with the parameters L and A := mmax − mmin (i.e. the difference
between the highest and lowest concentration of the solution). A sketch of the
conjectured bifurcation diagrams is given in Figure 2.6.

What happens when F (me) /∈ (Clow, Cup) is now clear, as we have seen before:
only the uniform stationary state me = M/L is a stationary solution and it is
stable. When F (me) ∈ (Clow, Cup) (but me /∈ (m1,m2)) we are in the so-called
metastable region. Here the uniform stationary state is still stable, regardless
of the length of the domain, but there are also non-trivial stable solutions. We
have also found that the global minimizer of the energy here is the two-phase
solution with one interface.

Finally we can have me ∈ (m1,m2). In this case the uniform stationary state
me = M/L is unstable, when the domain is big enough, and non-trivial solutions
are preferred by the system, with A away from 0. We also found that the global
minimizer is the two-phase solution with one interface in this situation as well.

2.1.5 Bifurcation diagram for the quadratic speed v = vq

In the previous section we analysed the Cahn-Hilliard equation in a general way.
From now on, we will abandon this general setting and try to apply our findings
to the specific form of the Cahn-Hilliard equation that describes our mussels.
In this setting the relevant equation is

∂m

∂t
= ∇[f(m)∇m− κ∇(∆m)],

where the function f is defined as

f(m) = v(v +m
dv

dm
).

Here v is the speed of the mussels. In section 1.1.4 we have described two
ways to define the density dependent movement speed of the mussels. We have
defined a quadratic fit approach as

vq(m) = m2 + β̃m+ 1 + d̃a.

We also introduced a piecewise linear description as

v(m, a) =

{
v1(m, a) = 1− β̃m if m < β̃/2;

v2(m, a) = 1−β̃2

2 + γ0e
−d̃a
(
m− β̃/2

)
if m > β̃/2.

In this section we will inspect the system when we choose the quadratic fit
approach for the density dependent movement speed of the mussels. In the
next section we will then study the system when we have the piecewise linear
description.
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Quadratic fit: v(m) = m2 + β̃m+ 1 without algae

When we choose v(m) = m2 + β̃m+ 1 we find the function f to be

f(m) = (m2 + β̃m+ 1)(3m2 + 2β̃m+ 1).

The function F can also be found by integration of f . In this way we obtain
the following possible form of F , which is defined up to a constant:

F (m) =
3

5
m5 +

5

4
β̃m4 +

4 + 2β̃2

3
m3 +

3

2
β̃m+m

Since the speed of the mussels must be positive, we need to have v(m) > 0 for
all m ∈ [0,∞). Therefore we need to have β̃ > −2. Hence we find that f(m)
can only be negative when 3m2 + 2β̃m + 1 is negative. From this we find the

condition β̃ < − 3m2+1
2m . Hence we obtain that the uniform stationary states

me = M/L are unstable when β̃ < − 3m2
e+1

2me
.

We can also find that the maximum value of the expression − 3m2
e+1

2me
is attained

when me = 1
3

√
3. Therefore there must be a bifurcation when β̃ = βc = −

√
3.

When β̃ > βc we find f(m) > 0 for all m ∈ (0,∞). Therefore F is strictly in-
creasing and therefore only the uniform steady states me = M/L are stationary
solutions for the problem.

When β̃ < βc we can find concentrations m1 and m2 such that f(m) < 0 for
m ∈ (m1,m2) and f(m) > 0 for m ∈ (0,m1) ∪ (m2,∞). Thus in this situation
we will find a spinodial region and a metastable region as we have discussed
in the previous sections. Since finding the constant Cm as a function of β is
highly nontrivial and requires numerical approaches, we won’t discuss this here
and only acknowledge the existence of a curve that indicates the start of the
metastable region.

In Figure 2.7 we sketched the bifurcation plane for the parameters β̃ and me =
M/L. Here we made a distinction between the various regions and the possible
stationary solutions.

Quadratic fit vq with algae

In the previous section we inspected the Cahn-Hilliard equation in the mussel
setting when the speed is defined as v(m) = m2 + β̃m + 1. It is however
logical that the speed also depends on the concentration of available algae, i.e.
v(m) = m2 + β̃m+ 1− d̃a.

We have already argued that the concentration of algae should be more or less
constant on the fast time scales we are inspecting. Therefore we can introduce

the new parameter β′ = β̃√
1−d̃a

and the new variable m′ = m√
1−d̃a

. In this

way the speed can be written as v(m′) = (1 − d̃a)
(
m′2 + β′m′ + 1

)
, which

means that we essentially are in the same situation as before. In particular is it
possible to use the same bifurcation diagram as we derived in Figure 2.7 with
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me

β̃

βc

Figure 2.7 – Sketch of the bifurcation plane (β,me). Here the red region denotes
the spinodal region, in which the uniform steady states are unstable, the blue
region denote the metastable region in which the uniform steady states are stable
and the white region denotes the other region, in which the uniform steady states
are the only stable stationary solutions. We see that only when β < βc = −

√
3

we can find non-trivial stationary solutions. So one would expect to only see
patterns when β < βc.

our new parameters. For clarity we have given this bifurcation diagram again in
Figure 2.8, with the new parameters. We should note that now the bifurcation
value for β′ is given by βc = −

√
3. Therefore the bifurcation value for β̃ is now

−
√

3√
1−d̃ae

.

Since the variables β′ and m′ now depend on the value of ae and d̃ this for-
mulation is perhaps not the neatest formulation. Hence we also try another
approach. In this approach we try to determine the linear stability of the uni-
form stationary state given by (me, ae). From the previous section we know

that this state is linearly unstable when β′ < − 3m′2e +1
2m′e

. When we transform

this back to the original parameters we obtain the condition

β < βC(d) := −3m2
e + 1

2me
+ d

ae
2me

(2.8)

Since the speed v is assumed to be positive, it is not always possible to choose
the parameter β small enough for this instability to set in. More precisely, for
the speed of the mussels to be positive we need to have β > −2

√
1− d (and

d < 1).

Since me > 0 and ae ≥ 0 we know that the function d 7→ βC(d) is non-decreasing
in d. Therefore there are three forms that are possible for the bifurcation curve
in the (β, d)-plane:

(A) βC(0) > −2, in which case the bifurcation line starts in the permissible
region;

(B) βC(0) < −2 and ae
2me

is large enough, so that the bifurcation line does not
start in the permissible region, but βC(d) is for some range of values for
d;
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me√
1−d̃ae

β̃√
1−d̃ae

βc

Figure 2.8 – Sketch of the bifurcation plane (β′,m′e). Here the red region denotes
the spinodal region, in which the uniform steady states are unstable, the blue
region denote the metastable region in which the uniform steady states are stable
and the white region denotes the other region, in which the uniform steady states
are the only stable stationary solutions. We see that only when β′ < βc we can
find non-trivial stationary solutions. So one would expect to only see patterns
when β′ < βc.

(C) βC(0) < −2 and ae
2me

is too small, so that the bifurcation line does not lie
in the permissible region for any d.

In Figure 2.9 we sketched those three possible bifurcation planes for the para-
meters β and d, for a given specific uniform stationary state (me, ae). In the
next paragraphs we will determine how we can distinguish between those cases,
when the stationary state (me, ae) is given.

Situation (A) occurs when βC(0) > −2. That is, when −2 < − 3m2
e+1

2me
. This is

equivalent to the condition 3m2
e − 4me + 1 < 0 and with the quadratic formula

one immediately finds that βC(0) > −2 if and only if me ∈
(

1
3 , 1
)
.

Logically, situations (B) and (C) can only occur if me /∈
(

1
3 , 1
)
. In this case

βC(0) < −2. It remains to determine if there is a value for d ∈ (0, 1) such
that βC(d) > −2

√
1− d. Whether this happens is determined by the size of the

slope ae
2me

. There will be some threshold slope C(me) which is the largest slope

at which βC(d) < −2
√

1− d for all d ∈ (0, 1). When ae
2me

> C(me) we find
ourselves in situation (B) and otherwise we are in situation (C). The remainder
of this section will be devoted to finding an expression for the constant C(me).

We are interested in the largest slope C(me) such that we still have βC(d) < −2

for all d ∈ (0, 1). The resulting line
{
− 3m2

e+1
2me

+ C(me)d : d ∈ R
}

will be a a

line tangent to the function d 7→ −2
√

1− d. It is more convenient to find this
constant C(me) by reverse engineering. Instead of looking for all possible slopes
to see which one is a tangent line, we will look at each tangent line and see which

crosses the point
(

0,− 3m2
e+1

2me

)
.
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d

β

(a)

d

β

(b)

d

β

(c)

Figure 2.9 – Sketch of the three possible bifurcation planes (β, d). The red line
illustrates the bifurcation line, while the black line denotes the allowed values
to ensure positiveness of the mussel’s speed. In (a) we plotted the plane when
βC(0) > −2. In (b) we sketched the bifurcation line when βC(0) < −2, but when
there are values for d such that βC(d) > −2

√
1− d. Finally in (c) we sketched

the situation when βC(0) > −2
√

1− d for all d ∈ (0, 1). So in (c) the stationary
state is stable, while in (b) and (a) some of them can be unstable when the
parameters β and d are chosen right. The region below the red line corresponds
to the spinodial region that we found before.

So for this let d∗ ∈ (0, 1). The point (d∗,−2
√

1− d∗) is a point on the graph of
the function d 7→ −2

√
1− d, with the tangent line given by

ld∗(d) = −2
√

1− d∗ +
d− d∗√
1− d∗

=
1√

1− d∗
[d+ d∗ − 2].

This line crosses the β-axis in the point
(

0, d∗−2√
1−d∗

)
. Now we are interested in

the d∗-value for which this point coincide with the point
(

0,− 3m2
e+1

2me

)
. Then

the derivative of the function d 7→ −2
√

1− d in the point d∗ will be our desired
slope C(me). To find this particular value for d∗ we solve the equality

d∗ − 2√
1− d∗

= βC(0)

(d∗)2 − 4d∗ + 4 = βC(0)2(1− d∗)
(d∗)2 + d∗(βC(0)2 − 4) + (4− βC(0)2) = 0

The solutions are easily found with the quadratic formula to be

d∗1,2 =
4− βC(0)2

2
± 1

2
|βC(0)|

√
βC(0)2 − 4.

Since assumed that βC(0) < −2 we know that both of these values are indeed
well-defined. From this it is also clear that d∗2 < 0. Since we need to choose
d∗ ∈ (0, 1) this value is irrelevant. So the only relevant solution is d∗1. Note that
d∗1 ∈ (0, 1) for all values βC(0) ∈ (−2,−∞) as the expression for d∗1 is increasing
in βC(0) and d∗1(−2) = 0 and limβC(0)→−∞ d∗1(βC(0)) = 1.
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Now the slope C(me) that we were interested in is simply 1√
1−d∗1

. Upon sub-

stitution of the value of d∗1 and βC(0) = − 3m2
e+1

2me
we find that this slope can be

expressed as

C(me) =
1

8m2
e

(
−(9m2

e + 1)(m2
e + 1) + (3m2

e + 1)
√

(9m2
e + 1)(3m2

e + 1)
)
.

Thus we are finally able to make a distinction between situations (B) and (C):
we are in situation (B) when ae > 2meC(me) and in situation (C) when we
have ae ≤ 2meC(me).

The metastable region

In Figure 2.7 we have seen that there is a spinodal region and a metastable
region. In theory we should be able to apply the same procedure to the curve
introducing the metastable region. However, we were not able to find a exact
closed form of this line. Therefore the same approach cannot be performed here.
Instead we try to explain what can happen by carefully examining the diagram
in Figure 2.7.

If we fix the value m′e we see that, upon decreasing β′, we come into the

metastable region and then enter the spinodal region (unless m′e =
√

3
3 , in which

case we immediately enter the spinodal region). Now if we fix the value ofme and
that of dae we see that the value of m′e is fixed and that β =

√
1− daeβ′. There-

fore when we keep decreasing β we still find ourselves first in the metastable

region, before entering the spinodal region (unless, again m′e =
√

3
3 ).

Therefore the curve that denotes the beginning of the metastable region, in
the (d, β)-plane (i.e. keeping me and ae fixed), must lie above the curve corre-
sponding to the beginning of the spinodal region, and may only touch this line

when m′e =
√

3
3 . Therefore the complete diagram in the (d, β)-plane can have

many forms, of which we have sketched a few in Figure 2.10.

2.1.6 Bifurcation diagram for mussel system with v = vp

In the previous section we studied the Cahn-Hilliard equation for our mus-
sel system when we choose the quadratic fit approach v = vq for the density
dependent movement. We have also introduced a piecewise linear description
for this speed as

v(m, a) =

{
v1(m, a) = 1− β̃m if m < β̃/2;

v2(m, a) = 2−β̃2

2 + γ0e
−d̃a(m− β̃/2) if m > β̃/2.

In this section we will analyse the mussel system again, but now with this
piecewise linear description for the density dependent movement speed. Recall
that all the parameters in this description are positive and that we need to have
0 < β̃ <

√
2 and γ0 > 0 to ensure positiveness of the movement speed.

By construction we know that m 7→ v(m; a) is increasing when m > β̃/2 and
decreasing otherwise. Hence f := v(v + m dv

dm ) is increasing for m > β̃/2 and
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Figure 2.10 – Sketch of three possible complete bifurcation planes (β, d). The
spinodal region is the region between the red line, the metastable region lies below
the red and blue line. Finally all allowed combinations of the parameters β and d
lie above the black line. In (a) we have sketched a possible plane when me =

√
3,

in (b) we have me <
1
3

and and ae > 2meC(me). Finally, in (c), we have me > 1
and ae < 2meC(me). Note that these are mere sketches of examples; there are
even more, different planes possible.

might be decreasing for m < β̃/2. Since the uniform steady state m(x, t) = me

is unstable when f(me) < 0 we can conclude that only when me < β̃/2 this state
possibly is unstable. More precisely, the state is unstable when 1 − 2β̃me < 0,
or equivalently when me >

1
2β̃

.

We are however also interested to see what form the function m 7→ F (m) has.
Therefore we want to know for which values of β̃ the function m 7→ f(m) has
two roots. Clearly the minimum value for f(m) is attained close to m = β̃/2,
but a bit to the left, so that v(m, a) = v1(m, a). Hence in this point the value
limm↑β̃/2 f(m) = 1− β̃. Hence we see that a bifurcation occurs when β̃ = 1.

When β̃ > 1 we know that there is a value m1 = 1
2β̃
∈ (0, β̃/2) such that

f(m1) = 0. Because the piecewise linear description assumes that there is a
fast transition between v1 and v2 around the density m = β̃/2 and that this
transition is continuous, we know from the intermediate value theorem that the
other root, m2, will be close to β̃/2 and lie on this fast transition.

Hence we have again found a spinodal region (m1,m2) when 1 < β̃. There is
also again a metastable region for the same parameter values β̃ > 1, though it
is again too complicated to capture in closed form. It is however clear that the
right-hand corner of this metastable region will lie on the fast transition as well
and hence will be very close to m2. A sketch of the bifurcation diagram is given
in Figure 2.11.
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Figure 2.11 – Sketch of the bifurcation plane (β̃,me) for the piecewise linear
description v = vp of the movement speed of the mussels. Here the red region
denotes the spinodal region, in which the uniform steady states are unstable; the
blue region is the metastable region in which the uniform steady state is stable
and the white region is the region in which the uniform steady states are the only
(stable) stationary states. When β̃ > 1 we see we can find non-trivial stationary
solutions. So one would expect only to see patterns arising from the uniform
steady state when β̃ > 1.

2.2 Long time behaviour - Ostwald Ripening

In the first part of this chapter we have started our study of the Cahn-Hilliard
equation. We have described the possible steady states of the equation and
determined the stability of some of them. The steady states alone do not tell
the whole story of a gradient system. We should also look at the dynamics that
such a system possesses.

This second part of Chapter 2 is devoted to the long-time behaviour of solutions
of the Cahn-Hilliard equation, starting from an uniform stationary state. In
Section 2.1 we have already seen that these uniform steady states are stable
when they don’t lie in the spinodal region. These solution thus will always
remain in their starting position - since they are stable. Hence we focus on
those starting configurations that lie in the spinodal region - i.e. uniform states
that are unstable.

These solution will quickly evolve from an uniform configuration to a patterned
configuration. The wavelength of this pattern can be found using the linear
stability analysis from Section 2.1.3: the most critical wavelength will be the
dominant wavelength in these patterns. After this initial pattern has emerged
the analysis of Section 2.1 is no longer applicable.

From simulations (we come to these in Section 2.3. Also see [25]) it is know that
patterned solutions of the Cahn-Hilliard equation are not always stable. After
a ‘long’ time the pattern suddenly changes to another pattern, with a smaller
wavelength. This newly created pattern is also temporarily and again after a
‘long’ time will change to yet another pattern, with an even smaller wavelength.
This sequence repeats itself until the system hits a steady state - presumably a
global minimizer (see Section 2.1.2).
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This process is called ‘Ostwald Ripening’ and it will be the subject of our study
in this section. We start in Section 2.2.1 with a general qualitative description of
this phenomenon. We also give a few examples of other system that also exhibit
Ostwald Ripening, besides the Cahn-Hilliard equation. Then in Section 2.2.2
we explain how this Ostwald Ripening is related to the Cahn-Hilliard equation
and finally how this phenomenon can explain the observed wavelength selection
in Figure 4.

2.2.1 General Description of Ostwald Ripening

Imagine this: a few weeks ago you bought a big package filled with your favorite
ice cream. That same evening you opened it. You ate some and it was delicious:
exactly the right flavour and very soft. As the package was too big to eat at
once, you decide to put the rest in the freezer so you can enjoy it again some
time in the future. Two weeks later you decide to treat yourself once again with
the delicious ice cream. Will it taste as good as before?

Sadly, the answer is no. Though the flavour is still good, the ice cream is not
soft any more. In fact, the ice cream has become quite hard and it tastes more
like normal, hard ice at some places. Something has changed in the structure
of the ice cream over time. This process, responsible for this ice cream ruining,
is Ostwald Ripening (see [26] for more science behind ice cream).

We have already said that Ostwald Ripening is also the process that dictates
the long time behaviour of the Cahn-Hilliard equation. So what exactly is this
phenomenon? Generally this name is given to the process that describes the
change of inhomogeneous structures over long time periods. In this section we
will inspect this Ostwald Ripening. To do so we will describe this phenomenon
at smaller and smaller scales, using the ice cream example to go by.

The ice cream of our little story spoiled over the course of a few weeks. At the
start of this period the ice cream was perfectly soft. The softness of ice cream
is determined by the size of the ice crystals in the ice cream. When they are
all small the ice is soft and when they are big the ice cream is hard. Since our
ice cream lost its softness over time, that means that the ice crystals in the ice
cream grew in size over time.

To explain why this happens we need to zoom in on our ice cream and look at
some physics We will look at the energy of the system (i.e. of our ice cream).
It turns out that it is energetically favourable for ice crystals to stick together;
a boundary between an ice crystal and something else gives an energy penalty
(see [27] Chapter 3). Therefore the most energetically favourable configuration
of the system is achieved when all ice crystals are clustered and the boundary
between ice crystals and other material is minimal.

In Section 2.1.2 we saw that the global (energy) minimizer of the Cahn-Hilliard
equation has the same properties. However this does not mean that the system
in fact will attain this state when given enough time. After all, it is possible
that there is a local minimum in the energy landscape. Hence the description
thus far is not good enough to understand what is happening during Ostwald
Ripening.
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Figure 2.12 – Schematic illustration of an ice-crystal. The black lines denote the
bonds between atoms, which are located at the intersections of the black lines.
Clearly the ice atom in the interior of the crystal is in an energetically favourable
place as it has 6 neighbours, whereas the other atoms, at the surface, have less
bonds and thus are less stable.

Ice atoms want to stay together, because they bond with each other. When we
look at an ice crystal it is clear that atoms in the interior are quite stable, as
they are bonded to six neighbours (see Figure 2.12). Atoms on the surface of
the crystal have less neighbours and hence are less stable. If we now have a
fixed amount of ice atoms, it is clear that it is best to create ice crystals with
larger volume to surface ratio. Therefore larger ice crystals are preferred.

This however still does not explain why the system is able to evolve from one
state, with small ice crystals, to an other state, with larger ice crystals. For this
we need to delve even deeper in the physics literature. The crystals in our ice
cream are made from water (in ice form). However, the rest of the ice-cream
is also made of water, though not in ice form. Hence our ice cream contains
water in two phases: a liquid phase and a solid phase (ice). So we are essentially
dealing with phase transitions.

In physics there is a concept called free energy, which indicates the amount of
energy that is available for the system. Water in liquid phase has a specific free
energy curve depending on the concentration of water. In the solid phase (i.e.
the ice crystals) there is also a curve describing the free energy. However this
curve depends on the size of the ice crystals5. It turns out that the free energy
in this solid phase can be described as

Gs(R)−Gs(∞) =
C

R
,

where Gs(∞) is the free energy (that still depends on the concentration) of the
solid phase when the curvature is infinite, R is the radius of the ice crystal and
C is some constant.

In Figure 2.13 we have sketched these free energies for both the solid and the
liquid phases. In the solid phase the atoms are closer together, explaining the
higher densities for this phase. At the ice-water surface there is transition
between the liquid and solid phases. During a phase transition the chemical
potential must be constant (see e.g. [28] section 2.3). The chemical poten-
tial is the derivative of the free energy with respect to the concentration (see

5More precisely, on the curvature of the interface.
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Figure 2.13 – Sketch of the free energy of water in liquid phase (blue) and in
solid phase for two different crystal sizes (red). The orange and purple lines are
the common tangent lines, needed to understand the phase transition between
liquid and solid phase.

e.g. [29] Chapter 1). Hence we can construct a common tangent between the
liquid phases free energy and that of the solid phase. In Figure 2.13 we have
constructed this line for two sizes of ice crystals.

The concentration at which a tangent line touches the free energy of the liquid
phase is the concentration of water (in liquid phase) at the ice-water interface,
for ice crystals with that particular radius R. Since the free energy decreases
for ice crystals with bigger sizes, we know that the concentration of water (in
liquid phase) at the interface is smaller for larger ice crystals.

Now, let’s look at an ice cream with two ice crystals, of sizes R1 and R2 > R1.
In Figure 2.14a we have sketched this situation. Because of the difference in
size the concentration of water near the two interfaces is different as we have
seen. In Figure 2.14b we have sketched the concentration along a line from the
center of the left crystal to the center of the right crystal.

The concentration of water in the liquid phase will just decrease when going
from the left interface to the right interface. Hence there will be a difference in
the concentration in this phase, which will lead to diffusion of the water. Thus
the water near the interface with the smaller crystal will move to the interface
with the bigger crystal over time. This can only happen when the smaller crystal
shrinks and the larger one grows.

There is a positive feedback loop in this process. A small crystal will shrink
to an even smaller crystal, which will lead to even faster shrinking and so on.
On the other hand, the larger crystals will grow to even bigger crystals and
continue to grow faster, until all material from the smaller crystals is captured
in the larger crystals. In the end this process will end with a configuration that
has the smallest interface possible, for the given amount of atoms and the shape
of the volume.

It is possible to derive an equation that describes the evolution of the mean size
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Figure 2.14 – Sketch of an ice cream with two ice crystals (a), one smaller
one (left) and one bigger one (right). A side view of the concentration along the
orange line is sketched in (b). Here the smaller crystal is on the left and the bigger
on the right. Because of the gradient in the concentration, this configuration will
lead to diffusion of water from the smaller crystal to the bigger crystal, causing
the smaller to shrink and the larger to grow.

of the ice crystals:
〈R(t)〉3 − 〈R(0)〉3 = λt

Here 〈R(t)〉 is the mean radius of all the crystals in the system at time t and λ is
some parameter that depends on material properties, like the interface energy.
This law, sometimes referred to as the ‘t-to-the-one-third’ law, is the Lifschitz-
Slyozov law (after the researchers Lifschitz and Slyozov who discovered this law
in 1961 [12]). It has been verified in many experiments and simulations and it
is also possible to derive it analytically in many other systems, for example in
the Cahn-Hilliard equation.

2.2.2 Ostwald Ripening with mussels

In the previous section we gave a general description for Ostwald Ripening.
For our situation we need to understand the long time behaviour of the Cahn-
Hilliard equation. Historically the Cahn-Hilliard equation was introduced just
to capture this effect of Ostwald Ripening (explaining the terminology in the
Cahn-Hilliard equation - e.g. chemical potential and free energy), though a for-
mal analytic verification of this phenomenon was not found immediately. How-
ever, nowadays we do know that the Cahn-Hilliard equation leads to Ostwald
Ripening [30], though only for systems in dimensions 2 and larger.

Our analysis in section 2.1 is and our simulation in section 2.3 will be for the
Cahn-Hilliard system in one spatial dimension. There will be no Ostwald Ripen-
ing in these systems, as the size of the interface does not depend on the size
of the (mussel) clusters in a one-dimensional system. However, it is possible to
study interactions between pulse solutions of the one-dimensional Cahn-Hilliard
equation to determine the long time behaviour. Both from this analysis and
through simulations it has been verified that the one-dimensional Cahn-Hilliard
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Figure 2.15 – Correlation between the typical wavelength of patterns for mus-
sels, in experimental set-up (blue and green lines) and in a numerical simulation
(purple). The dashed lines are linear fits over the initial behaviour (i.e. before
a wavelength is ‘selected’). For the numerical simulation the theorized power
law is used instead. In these plots we can clearly see that there is some sort of
wavelength selection in the experiments after some hours. (Repeat of Figure 4)

equation, like the higher dimensional equations, has a long-term ripening ef-
fect preferring bigger clusters as well, similar to the Ostwald Ripening (see [30]
and [25]).

For the analysis of patterns in animal populations, we don’t need to worry about
this however, as animal populations never live in one-dimensional worlds, but
rather in two-dimensional or three-dimensional ones. Hence the Cahn-Hilliard
equation will lead to Ostwald Ripening for these populations. So in our standard
example, of mussel populations, the mathematical theory predicts a ripening
effect (as we already discussed in the introduction).

So from this perspective we should indeed expect that a tank filled with mussels
will - when the average density is in the spinodal region - start to form a pattern.
This pattern will then - as the Ostwald Ripening predicts - slowly evolve such
that the typical wavelength of the patterns increases, until finally all mussels
are clumped together, such that the interface is as small as possible.

However, in reality this is not what happens, as we have seen in the introduction
(a repeat of the plot presented in the introduction is given in Figure 2.15). So
the Ostwald Ripening in the Cahn-Hilliard equation is not observed in experi-
ments with mussels over longer time periods. Of course this can mean that the
(standard) Cahn-Hilliard description is not suited to understand the behaviour
of mussels in a tank and that we need to add additional terms to the standard
description or derive a completely other model. However, there is still some-
thing we can learn from the standard Ostwald Ripening phenomena as starting
point.

In Section 2.2.1 we have seen what happens when we have two ice crystals
of different sizes R1 < R2. We can directly translate this to two clumps of
mussels of different sizes. However, what happens when the clumps of mussels
are exactly as large? In that case the concentration at the interface (between
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Figure 2.16 – Sketch of a configuration with two clumps of mussel of the same
size (a) and a side view of the concentration along the orange line (b). Because
the clumps are of the same size, there is no gradient in the concentration (in the
low density state) and therefore this configuration will not evolve (i.e. it is a
steady state).

a high and a low density ‘state’ of mussels) is exactly the same and there is
no gradient in the system. Hence this system is (meta)stable6 and nothing will
happen; the system will stay in this configuration (see Figure 2.16).

We can also look what happens when we have two clumps of mussels, with
approximately the same size, e.g. R2 = R1 + ε̃ (with 0 < ε� 1). In Figure 2.17
we have sketched this situation. Since the clumps are now of different size there
is a gradient in the concentration and hence diffusion is expected. However, the
difference in concentration is minimal and therefore diffusion is only marginal.
That is, only a ‘small amount of mussels’ is expected to be transported from
the smaller clump to the bigger clump.

For a theoretical model this is no problem; it does not matter for a simulation
that the Cahn-Hilliard equation dictates that ‘one half of a mussel’ or ‘three
twentieths of a mussel’ must be transported. In a real system this is not possible;
only whole mussels can exists. Because of this, there will be no transportation
of mussels from the somewhat smaller clump to the somewhat larger clump in
reality, as the (through Ostwald Ripening) predicted amount of transportation
is too small.

Hence the discrepancy between the predicted and observed behaviour of mus-
sels (i.e. the wavelength selection observed in experiments) can stem from
one (implicit) assumption of the Cahn-Hilliard equation. The Cahn-Hilliard
equation is only applicable to systems where the concentration can be chosen
continuously and fractional mass transportation is possible. As the experiments
are conducted with ‘only’ a few hundred mussels at best, the concentration is
by no means continuous. Therefore at some moment the Ostwald Ripening will
stop, because the desired amount of transportation is too small.

6since a little perturbation will make one of the clumps bigger, so that we are back in the
initial situation with different sized clumps
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Figure 2.17 – Sketch of a configuration with two clumps of mussel of approxi-
mately the same size (a) and a side view of the concentration along the orange
line (b). Because the clumps are approximately equally large there is a small
gradient in the concentration of the mussels. Hence there will be diffusion in this
system, but it will only transport a ‘small amount of mussels’.

2.3 Simulations

In Sections 2.1 and 2.2 we studied the Cahn-Hilliard equation analytically.
In this section we turn our attention to simulations of this equation. More
specifically we examine the one-dimensional Cahn-Hilliard equation for our test-
case: a population of mussels.

In this section we will present simulations of the following equation

∂m

∂t
= dm

∂

∂x

(
v

[
v +m

∂v

∂m

]
∂m

∂x
− κ∂

3m

∂x3

)
, (2.9)

along with the natural boundary conditions:

mx(0) = mx(L) = 0;

mxxx(0) = mxxx(L) = 0,

and initial condition
m(0, x) = me.

Here dm and κ are positive constants and v is the density dependent speed. We
will present simulations for both presented choices of this movement speed (see
Section 1.1.4).

All simulations in this section start from an uniform steady state, as this is the
most common approach in the study of pattern formation. Because we need to
perturb the initial configuration a little bit, to prevent the simulations being
stuck in an unstable steady state, we apply a non-symmetric perturbation7.
The Fortran code used to perform these simulations was kindly provided by
Paul Zegeling and uses finite-difference numerical methods on a moving grid.
In this section we use these simulations to get a better intuition about the
solutions of the Cahn-Hilliard equation.

7Would the perturbation be symmetric in x = L/2 then the solution will always have this
symmetry, preventing us from seeing the ‘real’ evolution of the system.
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2.3.1 The start - short-time behaviour

Our first aim is to understand the initial behaviour of solutions. In Section 2.1
we have found that a solution, starting from a uniform steady state, will only
evolve to a configuration with patterns when this state me is located in the
spinodal region. For this reason, all simulations in this section start from steady
states in this region8.

In Figure 2.18 and Figure 2.19 we show the initial behaviour for respectively
the ‘quadratic’ movement speed vq as the ‘piecewise’ one vp. In both plots we
see patterns arising from the initial uniform configuration. From these figures
it is clear that both choices for the speed indeed lead to patterns, as expected
by our previous analysis. In fact, the patterns for both choices look very similar
and there is no clear distinction possible.

2.3.2 The end - long-time behaviour

In Section 2.2 we discussed the long term behaviour of the Cahn-Hilliard equation
from a physics viewpoint. Here we mentioned the ripening effect, that is en-
closed in the equation. After an initial pattern has been chosen by the solution,
it will stay close to this pattern for a long time, after which it suddenly will
change to another pattern only to repeat this process until the solution reaches
a minimizer, possibly the global minimizer, in which the amount of interfaces is
minimized (i.e. one in a one-dimensional system).

In this section we will study this behaviour using numerical methods. In
Figures 2.20 and 2.21 we show pattern plots of simulations for v = vq and
v = vp, respectively. In both figures one can clearly see that the initial pattern
settles and then after a while some of the initial peaks suddenly disappear. So
these figures indeed show the predicted ripening effect. Note that the initial
peaks start to form near the center of the domain; this is merely an effect of the
chosen perturbation, which is most prominent at the center of the domain.

In these simulation we again see no clear difference between the two possible
descriptions for the density dependent movement speed. In fact in all our
simulations we observed no qualitative difference between those two approaches.
Therefore in the rest of this section we shall only present the plots for the
‘quadratic’ approach v = vq.

Figures 2.20 and 2.21 show the ripening effect of the Cahn-Hilliard equation.
Because the domains in these simulation were so big they however fail to show
what happens when a peak disappears. Therefore we present a simulation for
a smaller domain in Figure 2.22. In this plot we can clearly see that the dis-
appearance of one peak leads to an increase in size of the central peak. So this
indicates that there is indeed a transport of mass when a peak disappears, as
was predicted in 2.2.

Finally, in Sections 2.1 and 2.2 we described a global minimizer of the system of
equation (2.9). This global minimizer is the configuration which has the least
possible number of transitions between the low and high density states (i.e.

8other choices would lead to boring behaviour: the solution just returns to the steady state.
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(a) (b)

Figure 2.18 – Pattern plot of a simulation of initial behaviour of equation (2.9)
with ‘quadratic’ speed v = vq = m2 + β̃m+1 on a one-dimensional domain [0, L].
In (a) we see a pattern plot from the top and in (b) from the side. X denotes the
spatial position and T the time. The z-axis in (b) denotes the concentration of
the mussels. The colours denote the density of the mussels, m, on a scale from
blue (low) to red (high). Parameter values: L = 50, T = 100, me = 0.5, κ = 0.05,
dm = 20, β̃ = −1.9.

(a) (b)

Figure 2.19 – Pattern plot of a simulation of initial behaviour of equation (2.9)
with speed v = vp (see section 1.1.4) on a one-dimensional domain [0, L]. In
(a) we see a pattern plot from the top and in (b) from the side. X denotes the
spatial position and T the time. The z-axis in (b) denotes the concentration of
the mussels. The colours denote the density of the mussels, m, on a scale from
blue (low) to red (high). Parameter values: L = 50, T = 500, me = 0.5, κ = 0.01,
dm = 20, β̃ = 1.35, γ0 = 1, d = 0, K = 1
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(a) (b)

Figure 2.20 – Pattern plot of a simulation of long-time behaviour of
equation (2.9) with ‘quadratic’ speed v = vq = m2 + β̃m+1 on a one-dimensional
domain [0, L]. In (a) we see a pattern plot from the top and in (b) from the side.
X denotes the spatial position and T the time. The z-axis in (b) denotes the
concentration of the mussels. The colours denote the density of the mussels, m,
on a scale from blue (low) to red (high). Parameter values: L = 200, T = 10000,
me = 0.5, κ = 0.05, dm = 3, β̃ = −1.78.

(a) (b)

Figure 2.21 – Pattern plot of a simulation of the long-time behaviour of
equation (2.9) with speed v = vp (see section 1.1.4) on a one-dimensional do-
main [0, L]. In (a) we see a pattern plot from the top and in (b) from the side.
X denotes the spatial position and T the time. The z-axis in (b) denotes the
concentration of the mussels. The colours denote the density of the mussels, m,
on a scale from blue (low) to red (high). Parameter values: L = 100, T = 10000,
me = 0.5, κ = 0.01, dm = 3, β̃ = 1.35, γ0 = 1, d = 0, K = 1
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(a) (b)

Figure 2.22 – Pattern plot of a simulation of long-time behaviour of
equation (2.9) with ‘quadratic’ speed v = vq = m2 + β̃m+1 on a one-dimensional
domain [0, L]. In (a) we see a pattern plot from the top and in (b) from the side.
X denotes the spatial position and T the time. The z-axis in (b) denotes the
concentration of the mussels. The colours denote the density of the mussels, m,
on a scale from blue (low) to red (high). Parameter values: L = 50, T = 70,
me = 0.5, κ = 0.05, dm = 20, β̃ = −1.9. Note that this is the same set-up as
used for the simulation of Figure 2.18 but with a longer simulation time.

(a) (b)

(c) (d)

Figure 2.23 – Pattern plot of a simulation of (very) long-time behaviour of
equation (2.9) with ‘quadratic’ speed v = vq = m2 + β̃m+1 on a one-dimensional
domain [0, L]. In (a) we see a pattern plot from the top and in (b) from the side.
X denotes the spatial position and T the time. The z-axis in (b) denotes the
concentration of the mussels. The colours denote the density of the mussels, m,
on a scale from blue (low) to red (high). Parameter values: L = 50, T = 5 · 105,
me = 0.5, κ = 0.05, dm = 3, β̃ = −1.78.
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interfaces). Since the ripening is a very slow and subtle phenomenon, it is quite
difficult to observe it in a simulation, due to the amount of computation time
that is sometimes needed. Besides, simulations sometimes tend to get stuck in
metastable configurations, which also prevent an easy study of them.

Moreover, it is very difficult to predict what will happen to a pattern over time.
In Figure 2.23 we show simulations in which the global minimizer is found. Here
we see that after about 4.5 · 105 time steps this minimizer is found. However,
when we look at the configuration at 2 · 104 steps there is no real way we could
have predicted this behaviour, which in turn couldn’t really be predicted by a
view of the pattern at t = 1 · 104.

So the simulations that we have presented in this section are in good agreement
with the analysis we have done in the rest of this chapter. Moreover, we can
conclude here that there is no real qualitative difference between solutions of
equation (2.9) between the two choices for the movement speed, v = vq and
v = vp.

2.4 Summary

In this chapter we studied the general Cahn-Hilliard equation and applied this
knowledge to a system describing the dynamics of a mussel population (in the
absence of algae). When this system starts from an uniform steady state,
m(x, t) = me, we have seen that patterns can form, but only when this steady

state is located in the spinodal region, i.e. when f(me) = v(me)
[
v(me) +m∂v(me)

∂m

]
<

0. When this condition is satisfied we see that the system creates patterns, de-
viating from this steady state.

However, the initially created patterns are not stable, although they tend to
persist for quite long time periods. When we wait long enough, we see that the
system suddenly and rapidly changes its pattern, to a new configuration with
a shorter typical wavelength. This process, called Ostwald Ripening, occurs
because the Cahn-Hilliard system allows for infinitesimal mass transportation
between peaks of the patterns.

In reality this is obviously not possible, as there can’t be an exchange of a frac-
tion of a mussel. Because this small transportation is the key ingredient of the
observed ripening effect, this could explain why the ripening stops in experi-
mental setups (see Figure 4). The assumed continuous modeling approach, as
implicitly used by the use of the Cahn-Hilliard equation, seems too smooth to
capture the behaviour of the mussels in the long run.
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Chapter 3

ε 6= 0 - The Full Population
Model

In Chapter 1 we created a general model that describes the interaction between
a predator and a prey, when the speed of one of the two depends on the local
density of the involved species. This model was captured in the following set of
equations:

∂m

∂t
= dm∇

(
v

(
v +m

∂v

∂m

)
∇m+ vm

∂v

∂a
∇a− κ∇∆m

)
+ εH(m, a) (3.1a)

∂a

∂t
= εda∆a+ εG(m, a) (3.1b)

Chapter 2 dealt with the situation in which interactions between species are not
relevant, i.e. when we take ε = 0. We discussed the behaviour of such a system
on both short and long time scales and found patterns arising.

However, in the reality of nature, the interactions between species are impor-
tant. So real statements about the effective ecology cannot be made with the
simplification of setting ε = 0 and we need to inspect the full population model,
when ε 6= 0. This chapter is devoted to the study of this general model.

We start by inspecting the general model, that is not adapted to the specific
behaviour of mussels. In Section 3.1 we determine the uniform stationary points
and their stability. Moreover, we also derive and discuss bifurcation lines, indi-
cating a change in stability of these points.

Subsequently in Section 3.2 we approximate the general model of equation (3.1).
For this we note that 0 < ε � 1 is a small parameter. Therefore we can
use standard perturbation techniques. We employ these in Section 3.2 to find
approximations of the eigenvalue curves at the bifurcation lines. Moreover, we
also present approximations of the bifurcation lines themselves, which allows us
to continue our analysis.

Then, in Section 3.3, we apply weakly non-linear stability analysis to the gen-
eral model, using the relevant approximations made in the previous section.
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This gives us information - as a Ginzburg-Landau Amplitude equation - about
solutions of equation (3.1) of the form(

m(x, t)
a(x, t)

)
=

(
me

ae

)
+A(ξ, τ)eikcx+ωt.

where kc is a wavelengths, ω is an imaginary eigenvalue, me and ae characterize
the uniform steady state and ξ and τ are a slow spatial and temporal variable,
respectively. The meaning of these parameters and variables is explained in
more depth later on in this chapter.

In Section 3.4 we return to the specific model for our mussel-algae system. In
this section we apply the knowledge that we will have gained in the first sections
of this chapter. This gives us an insight about the kind of solutions that are
possible for system (3.1) when it is applied to the mussel-algae system. We also
compare these results to the results found in the reaction-diffusion model as
presented in section 1.2.

Finally in Section 3.5 we turn to numerical simulations once more to study
our model in one spatial dimension. Here we simulate both choices for the
density dependent movement speed. These simulations illustrate the analytical
study of the sections before it and also give us clues about the other behaviour
of solutions, for example on (very) long time scales or when solutions are not
started at the uniform stationary point of the equation.

3.1 Linear Stability of the uniform steady states

Our first objective is to find the uniform stationary solutions of the model in
system (3.1). We look for solutions of the form (m(x, t), a(x, t)) ≡ (me, ae) that
satisfy this equation. Hence we simply need to find concentrations (me, ae) such
that {

0 = H(me, ae);

0 = G(me, ae).
(3.2)

Now, for the remainder of this Chapter, we assume that (me, ae) is a specific
uniform stationary solution (i.e. (me, ae) solves system (3.2)). We want to
study the stability of these stationary solutions. In order to do that, we need to
figure out if stationary solutions persist under small perturbations of the form
(m(x, t), a(x, t)) = (me, ae) + δ(m̃(x, t), ã(x, t)) where |δ| � 1.

The interaction terms H and G are relatively easy to compute in these points,
as we can just approximate them with a Taylor polynomial as (note that we
have H(me, ae) = 0 = G(me, ae)):

H(me + δm̃, ae + δã) = δ
∂H

∂m
(me, ae)m̃+ δ

∂H

∂a
(me, ae) +O(δ2)

G(me + δm̃, ae + δã) = δ
∂G

∂m
(me, ae)m̃+ δ

∂H

∂a
(me, ae) +O(δ2)

It is also easy to see that ∆(me + δm̃) = δ∆m̃ and ∆(ae + δã) = δ∆ã since
(me, ae) is a uniform stationary solution and hence its derivatives vanish.
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Perhaps the most difficult term is the last remaining term, which we define by
the functional

R(m, a) := ~∇ ·
[
v

(
v +m

∂v

∂m

)
~∇m+ vm

∂v

∂a
~∇a
]
.

For notational convenience we define:

ve := v(me, ae) v̄ := v(me + δm̃, ae + δã)

∂ve
∂m

:=
∂v

∂m
(me, ae)

∂v̄

∂m
:=

∂v

∂m
(me + δm̃, ae + δã)

∂v̄

∂a
:=

∂v

∂a
(me + δm̃, ae + δã)

∂ve
∂a

:=
∂v

∂a
(me, ae)

We want to linearize R(me + δm̃, ae + δã). For this we find

R(me + δm̃, ae + δã)

=~∇ ·
[
v̄

(
v̄ +me

∂v̄

∂m
+ δm̃

∂v̄

∂m

)
~∇(δm̃) + v̄(me + δm̃)

∂v̄

∂a
~∇(δã)

]
+O(δ2)

=δ~∇ ·
[
ve

(
ve +me

∂ve
∂m

)
~∇m̃+ veme

∂ve
∂a

~∇ã
]

+O(δ2).

Here we have used the Taylor expansion as an approximation for v̄, ∂v̄
∂m and ∂v̄

∂a .

If we combine all observations we have made, we can find the following (linear)
system for our small perturbation δ(m̃, ã) as:{

∂m̃
∂t = dm

[
ve
(
ve +me

∂ve
∂m

)
∆m̄+ veme

∂ve
∂a ∆ā− κ∆2m̄

]
+ ε
[
∂He
∂m m̃+ ∂He

∂a ã
]

∂ã
∂t = ε

[
da∆ã+ ∂Ge

∂m m̃+ ∂Ge
∂a ã

]
(3.3)

where we have adapted the notation ∂He
∂m := ∂H

∂m (me, ae) and so on.

To study the linear stability of the uniform stationary point (me, ae) we try

to perturb it with waves, i.e. we take (m̃, ã) = exp
[
i(~k, ~x) + ωt

]
(m̄, ā). Here

~k = (kx, ky) is the wavelength of the wave and (m̄, ā) ∈ R2.

Substituting this in the linear perturbed system of equation (3.3), gives the
following set of coupled equations that need to be satisfied:ωm̄ = −dm|~k|2

[
ve
(
ve +me

∂ve
∂m

)
m̄+ veme

∂ve
∂a ā+ κ|~k|2m̄

]
+ ε∂He∂m m̄+ ∂He

∂a ā

ωā = ε
[
−da|~k|2ā+ ∂Ge

∂m m̄+ ∂Ge
∂a ā

]
We can write this in matrix notation as

ω

(
m̄
ā

)
= M(~k)

(
m̄
ā

)
.

Here M(~k) is a wavelength-dependent matrix, which is defined as

M(~k) :=

 −dm|~k|2[ve(ve +me
∂ve
∂m

)
+ κ|~k|2

]
+ ε ∂He

∂m
−dm|~k|2veme

∂ve
∂a

+ ε ∂He
∂a

ε ∂Ge
∂m

ε
[
−da|~k|2 + ∂Ge

∂a

] .
(3.4)
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In the matrix notation it is clear we are considering an eigenvalue problem. So
to find the possible values of ω1,2 = ω1,2(~k) we need to find the eigenvalues of

the matrix M(~k). The sign of those eigenvalues then determines the stability of

the uniform steady state under perturbations with wavelength ~k; if the real part
of both eigenvalues is negative, the state is stable under these perturbations,
whereas the state is unstable when the real part is positive.

In order for the uniform steady state to be stable under perturbations of all
possible wavelengths ~k, we need to have that all eigenvalues, of all possible

wavelengths ~k, are negative. That is, we need Re
(
ω1,2(~k)

)
< 0 for all wave-

lengths ~k.

However, it is also possible that there are a few specific wavelengths ~kc such
that one or two of the eigenvalues ω1,2(~kc) has zero real part, while all the other
eigenvalues, corresponding to the other possible wavelengths, still have negative
real parts. In this case those specific wavelengths are called critical wavelengths,
as the corresponding eigenvalues will be the first to become positive, and hence
are the most critical.

3.1.1 On using the trace and the determinant to deter-
mine eigenvalues

In order to study the linear stability of the uniform steady state we thus need
to study the behaviour of the eigenvalues ω1,2(~k). We do this by studying both

the trace and the determinant of the matrix M(~k). As before we will denote

the eigenvalues of M(~k) by ω1,2(~k). Without loss of generality we can assume

Re
(
ω1(~k)

)
≥ Re

(
ω2(~k)

)
.

From linear algebra it is well known that the trace of a matrix corresponds to
the sum of the eigenvalues and the determinant corresponds to the product of
the eigenvalues. This means, for our matrix M(~k) that:

Tr
(
M(~k)

)
= ω1(~k) + ω2(~k);

det
(
M(~k)

)
= ω1(~k)ω2(~k).

With this information, we can use the trace and the determinant of the matrix
M(~k) to determine the signs of the eigenvalues ω1,2(~k). We know that the
determinant determines the relation between the sign of both eigenvalues:

if det M(~k) > 0 then sgn Re ω1(~k) = sgn Re ω2(~k);

if det M(~k) = 0 then ω1(~k) = 0 or ω2(~k) = 0;

if det M(~k) < 0 then sgn Reω1(~k) = −sgn Reω2(~k).

On the other hand the trace gives a clue on the sign of one of the eigenvalues:

if Tr M(~k) > 0 then Reω1 > 0;

if Tr M(~k) = 0 then Reω1 = −Reω2;

if Tr M(~k) < 0 then Reω2 < 0.
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Tr M

detM

ω2 < 0 < ω1

|ω2| > |ω1|
ω2 < 0 < ω1

|ω2| < |ω1|

ω2 < 0 < ω1

|ω2| = |ω1| ω2 = 0 < ω1ω2 < 0 = ω1

ω2 < ω1 < 0 0 < ω2 < ω1

ω2 = 0 = ω1

ω2 = ω1 < 0 0 < ω2 = ω1

0 < Re ω2 = Re ω1Re ω2 = Re ω1 < 0

Re ω2 = 0

Re ω1 = 0

Figure 3.1 – Graphical illustration of the possible signs of the eigenvalues ω1

and ω2 depending on the trace and the determinant of the 2 × 2 matrix M , as
discussed in the text. The dotted, orange line detM = (Tr M)2/4 is the crossing
line between purely real and imaginary eigenvalues; the orange region denotes the
region in which imaginary eigenvalues exist. From the figure it is clear that the
real part of both eigenvalues is negative only in the north-western region of this
plane, when detM > 0 and TrM < 0.
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There is, however, also another relation between the eigenvalues of the matrix
M(~k) and its trace and determinant. It is possible to write the dispersion

relation in terms of the trace and determinant of M(~k) as

0 = ω2 − Tr M(~k)ω + detM(~k).

So this means that the eigenvalues ω1,2(~k) can be expressed as

ω1,2(~k) =
Tr M(~k)

2
± 1

2

√(
Tr M(~k)

)2

− 4 detM(~k).

So this means that complex eigenvalues only exist when detM(~k) >
(TrM(~k))

2

4

and that Reω1(~k) = Reω2(~k) in this region. A graphical summary of our findings
in this section is given in Figure 3.1.

From this analysis it is clear that we have two non-positive eigenvalues ω1(~k) and

ω(~k) only when both detM(~k) ≥ 0 and Tr M(~k) ≥ 0. Moreover, we know that

precisely one eigenvalue is zero when detM(~k) = 0 and Tr M(~k) > 0 and that

precisely two eigenvalues are purely complex if Tr M(~k) = 0 and detM(~k) > 0.

When Tr M(~k) = 0 and detM(~k) = 0 hold simultaneously we know that both
eigenvalues are zero.

3.1.2 The determinant and the trace of our matrix M(~k)

Our analysis so far only inspected one particular value for the wavelength k. For
our uniform steady state to be stable under perturbations of all wavelengths,
we need Re ω1,2(~k) < 0 for all wavelengths ~k. That is, we need detM(~k) > 0

and Tr M(~k) < 0 for all wavelengths ~k in order for the state to be stable under
all of these perturbations.

So if our combination of parameters is such that these conditions are obeyed we
know that our system is stable. However, our combination of parameters could
also be such that either detM(~k) < 0 or Tr M(~k) > 0 for some wavelength
~k. In that case we know that at least one of the corresponding eigenvalues is
positive and hence the uniform steady state is unstable under perturbations of
this wavelength.

But, there is still a particular interesting situation left, that we have not yet
discussed. We could have chosen our parameters in a way that there are a few
wavelengths ~k such that either detM(~k) = 0 and Tr M(~k) ≤ 0 or Tr M(~k) = 0

and detM(~k) ≥ 0, while the determinant is positive and the trace negative
for all other wavelengths. This choice of parameters is called critical and the
particular wavelengths that have this property are called critical wavelengths
(for the given set of parameters).

These critical circumstances are particularly interesting since the state is nearly
stable in this case and we can apply our weakly non-linear stability analysis to
obtain amplitude equations to further investigate the stability of nearly uniform
steady states. So this section is devoted to finding the form of the function
~k 7→ detM(~k) and ~k 7→ Tr M(~k) for various parameter combinations.
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To start with this we return to our matrixM(~k), that we defined in equation (3.4).
For notational convenience we introduce the following new parameters:

µ10 =
∂He

∂m
µ20 =

∂He

∂a
(3.5a)

µ11 = dmve

(
ve +me

∂ve
∂m

)
µ21 = dmveme

∂ve
∂a

(3.5b)

µ12 = dmκ µ40 =
∂Ge
∂a

(3.5c)

µ30 =
∂Ge
∂m

µ41 = da (3.5d)

From the conditions on our original parameters, we know that µ12 > 0 and
µ41 > 0 since da, dm, κ > 0. The sign of the other parameters is unknown and
does depend on the specific form of v and the interaction terms G and H.

With this notation our matrix M(~k) reads:

M(~k) =

(
−µ12|~k|4 − µ11|~k|2 + εµ10 −µ21|~k|2 + εµ20

εµ30 −εµ41|~k|2 + εµ40

)
(3.6)

The trace and the determinant can be computed and they turn out to be:

Tr M(~k) =− µ12|~k|4 − (µ11 + εµ41)|~k|2 + ε(µ10 + µ40)

detM(~k) =ε
(
µ12µ41|~k|6 + (µ11µ41 − µ12µ40)|~k|4

+(µ21µ30 − µ11µ40 − εµ10µ41)|~k|2 + ε[µ10µ40 − µ20µ30]
)

In the following paragraphs we study the possible forms of these polynomials in
|~k|. For that it is easy to introduce another set of parameters:

α = µ12µ41 ζ = µ12 (3.7a)

β = µ11µ41 − µ12µ40 η = µ11 + εµ41 (3.7b)

γ = µ21µ30 − µ11µ40 − εµ10µ41 θ = −ε(µ10 + µ40) (3.7c)

δ = ε[µ10µ40 − µ20µ30] (3.7d)

where α > 0 and ζ > 0 since µ12, µ41 > 0 as we have seen before.

We can now write the trace and the determinant as

Tr M(~k) = −ζ|~k|4 − η|~k|2 − θ (3.8)

detM(~k) = ε
(
α|~k|6 + β|~k|4 + γ|~k|2 + δ

)
(3.9)

Since ζ > 0 and α > 0 the form of these trace and determinant functions is
completely determined by the chosen parameters η and θ (for the trace) and
β, γ and δ (for the determinant). In the next sections we inspect the possible
forms of the trace and determinant, for various values of the parameters.
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3.1.3 On the form of detM(~k)

We start by characterizing the determinant. In our analysis we want to deter-
mine what choice of parameters leads to detM(~k) ≥ 0 for all possible wave-

lengths ~k, as we want to identify the critical parameters and wavelengths.

Since ε > 0 the sign of the determinant is determined by the sign of the polyno-
mial B(~k) := α|~k|6 +β|~k|4 +γ|~k|2 +δ. We have seen that α > 0. Hence we know

that B(~k)→∞ as |~k| → ∞. So to check when B(~k) ≥ 0 for all wavelengths, we
need to identify the minimum of the function B. Also note that the wavelength
that leads to this minimum is our critical wavelength ~kc.

Setting the derivative of B with respect to |~k| equal to zero gives us candidates
for the minimum value. That is, we must solve

0 = 2~k
(

3α|~k|4 + 2β|~k|2 + γ
)
.

This is solved by ~k = 0 or |~k|2 = 1
3α

(
−β ±

√
β2 − 3αγ

)
. First we observe

that ~k = 0 is a solution regardless of the values of the parameters. The other

possibility |~k|2 = 1
3α

(
−β ±

√
β2 − 3αγ

)
is only a solution when the right-hand

side is real and positive. For |~k|2 = 1
3α

(
−β +

√
β2 − 3αγ

)
this leads to the

condition

(β, γ) ∈
{

(β, γ) ∈ R2 : β ≥ 0, γ ≤ 0
}
∪
{

(β, γ) ∈ R2 : β ≤ 0, γ ≤ β2/(3α)
}

and for |~k|2 = 1
3α

(
−β −

√
β2 − 3αγ

)
this leads to the condition

(β, γ) ∈
{

(β, γ) ∈ R2 : β ≤ 0, 0 ≤ γ ≤ β2/(3α)
}

So we now have created three regions in the (β, γ) plane, with respectively one,
two or three possible minimal points (see Figure 3.2). We still must determine
when these candidates are actual (local) minimal points. To do that, we can
use the second derivative test. We find for the possible candidates:

for ~k = 0 : sgn B′′(k) = sgnγ

for |~k|2 =
1

3α

(
−β +

√
β2 − 3αγ

)
: sgn B′′(k) = sgn

(
β2 − 3αγ − β

√
β2 − 3αγ

)
for |~k|2 =

1

3α

(
−β −

√
β2 − 3αγ

)
: sgn B′′(k) = sgn

(
β2 − 3αγ + β

√
β2 − 3αγ

)
So the second derivative test gives that ~k = 0 is a (local) minimum if γ > 0

and |~k|2 = 1
3α

(
−β +

√
β2 − 3αγ

)
if β ≤ 0 and γ ≤ β2

3α or β > 0 and γ < 0.

|~k|2 = 1
3α

(
−β −

√
β2 − 3αγ

)
is never a local minimum, since sgn B′′(k) is

always negative in the region in which this possible candidate is an extreme
value of B.

From this analysis it is clear that ~k = 0 is the global minimum in region (I) and

|~k|2 = 1
3α

(
−β +

√
β2 − 3αγ

)
in region (II) (see Figure 3.2). In region (III) it

is not yet clear which of those two values is the global minimum.
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β

γ

(I)

(II)

(III)

Figure 3.2 – Sketch of the (β, γ) plane, divided into three regions, with different
possible candidates for the critical wavelength. In region I (red), we only have
~k = 0, in region II (blue) we have ~k = 0 or |~k|2 = 1

3α

[
−β +

√
β2 − 3αγ

]
and

in region III (green) we have k = 0, |~k|2 = 1
3α

[
−β +

√
β2 − 3αγ

]
or we have

|~k|2 = 1
3α

[
−β −

√
β2 − 3αγ

]
for the possible minimal values. Note that in going

from region III to region I four possible wavelengths become imaginary (i.e. on

the line {(β, β2/(3α)) : β < 0} we have ~k = 0 or |~k|2 = −β
3α

. On the other line

{(β, 0) : β < 0} we have ~k = 0 or |~k|2 = 2|β|
3α

and on the line {(β, 0) : β ≥ 0} we

have ~k = 0.

To determine which of these wavelengths is the global minimum we must com-
pare the different values of B(k) for these wavelengths. Substituting these values
in the function B gives

B(~k = 0) = δ (3.10a)

B( ~k∗) = δ +
−β +

√
β2 − 3αγ

27α2

(
−β2 + 6αγ + β

√
β2 − 3αγ

)
(3.10b)

where ~k∗ is a wavelength such that | ~k∗|2 = 1
3α

(
−β +

√
β2 − 3αγ

)
.

Since −β +
√
β2 − 3αγ > 0 in region (III), we can determine the real global

minimum by looking at the sign of the L(β, γ;α) := −β2 + 6αγ+β
√
β2 − 3αγ.

If L(β, γ;α) > 0 then the minimum is attained at ~k = 0. If L(β, γ;α) < 0 then

the minimum is attained in ~k∗. If L(β, γ;α) = 0 then both ~k and ~k∗ are the
global minima, since the value for B is the same for all these wavelengths.

With a fairly easy computation we find that L(β, γ;α) = 0 when

(β, γ) ∈ A :=

{
(β, γ) : β < 0, γ =

β2

4α

}
∪ {(β, γ) : β > 0, γ = 0} (3.11)

If (β, γ) lies above this set, then L(β, γ;α) > 0 and when (β, γ) lies below this
set then L(β, γ;α) < 0.

So at this point it is clear that the minimal value for B is attained in ~k = 0

when (β, γ) lies above the set A and in |~k|2 = 1
3α

(
−β +

√
β2 − 3αγ

)
when
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β

γ

Figure 3.3 – Graphical illustration of the possible form of the function B as a
function of the wavelength k, for various combination of the parameters β and
γ, where we have chosen δ = δc. In the red regions the critical wavelength is
~kc = 0 and δc = 0, while in the grey region the critical wavelengths need to

satisfy the condition |~kc|2 = 1
3α

[
−β +

√
β2 − 3αγ

]
and here we find that the

critical value is δc =
−β+
√
β2−3αγ

27α2

(
β2 − 6αγ − β

√
β2 − 3αγ

)
. Only at the line

{(β, β2/(4α)) : β < 0} there are three critical wavelengths.

(β, γ) lies below the set A. When (β, γ) ∈ A then we have both ~k = 0 and

|~k|2 = 1
3α

(
−β +

√
β2 − 3αγ

)
as minimal values.

Now that we have identified the wavelength in which the minimum for B is
attained, we can determine what condition need to be satisfied in order for
the determinant to be non-negative for all wavelengths. For this we denote this
minimal wavelength by k̄. Then we need to have B(k̄) ≥ 0. From equation (3.10)
it is clear that we need to have

δ ≥ 0

when k̄ = 0 and

δ ≥ −β +
√
β2 − 3αγ

27α2

(
β2 − 6αγ − β

√
β2 − 3αγ

)
when k̄ 6= 0.

Since the right-hand sides of these expressions coincide when (β, γ) ∈ A this
requirement is in a well defined form. We also note that the critical parameter
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combination is the combination such that the relevant equality holds. Thus we
can define the critical value for δ as

δc := max

{
0,
−β +

√
β2 − 3αγ

27α2

(
β2 − 6αγ − β

√
β2 − 3αγ

)}
.

The findings on detM(~k) is also graphically shown in Figure 3.3 for a critical
combination of parameters α, β, γ and δ.

3.1.4 On the form of Tr M(~k)

To study the behaviour of the trace, we must recall the form of the trace of
equation (3.8):

Tr M(~k) = −ζ|~k|4 − η|~k|2 − θ
This time, we want to find out under what parameter choices Tr M(~k) ≤ 0 for

all possible wavelengths ~k. The parameter choices that lead to Tr M(~k) = 0 for

a few wavelengths and Tr M(~k) < 0 for all other wavelengths, are called critical

η

θ

Figure 3.4 – Graphical illustration of the possible forms of the trace Tr M(~k)

as a function of the wavelength ~k, for various combinations of the parameters η
and θ. In the green region we have Tr M(~k) < 0 for all wavelengths, while in

the red region we have Tr M(~k) > 0 for a range of wavelengths. The blue line

denotes where Tr ~kc = 0 for a specific choice of the wavelength. That is, ~kc = 0
when η > 0 and |~kc|2 = −η

2ζ
when η < 0.
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and the corresponding wavelength ~k corresponding to Tr M(~k) = 0 is called

critical and denoted by ~kc.

Since ζ > 0 as we have seen before, we know that Tr M(~k)→ −∞ as |~k| → ∞.
So to check that the trace is everywhere non-negative it suffices to check if the
trace is non-negative in its maximal value. We also note that the wavelength
that realizes this maximum is the critical wavelength ~kc.

By differentiation we find the possible extreme wavelengths as ~k = 0 and as
|~k|2 = − η

2ζ . The latter wavelengths only exist when η < 0. By the second

derivative test we find that ~k = 0 is a maximum when η > 0 and that |~k|2
corresponds to a maximum when η < 0. When η = 0 both possible candidates
coincide and the maximum is then attained in ~k = 0.

Let’s denote the wavelength that attains the global minimum (for a given para-
meter combination ζ and η) by k∗. Then we know that the trace is non-positive

for all wavelengths if Tr M( ~k∗) ≤ 0. If the equality holds we know that we are

in the critical situation and the wavelength ~k∗ is called critical.

Substituting the candidates in Tr M(~k) gives the condition θ ≥ 0 when η ≥ 0

and the condition θ ≥ η2

4ζ when η ≤ 0. So we can define θc = max
{

0,−η|η|4ζ

}
and conclude that the trace is always negative when θ > θc and that there is a
critical wavelength only when θ = θc.

In Figure 3.4 the results of our analysis in this section is illustrated. The blue line
denotes the critical line in the (η, θ)-plane, where we have a critical wavelength
kc and a critical parameter combination such that θ = θc. The green area shows
the region of the (η, θ) plane where the trace is negative for all wavelengths.

3.1.5 Stability Analysis of the uniform stationary point

From the previous sections we have learned that Tr M(~k) < 0 for all wavelengths

when θ > θc and detM(~k) > 0 for all wavelengths when δ > δc. Thus, when
these two conditions (i.e. θ > θc and δ > δc) hold, the uniform stationary point
(me, ae) is stable.

We are, however, especially interested in the case that the uniform stationary
point is stable under perturbations of almost all wavelengths. This is the case
when either the trace is zero (and the determinant non-negative) or the determi-
nant is zero (and the trace non-positive), as we have discussed in section 3.1.1.

If we denote the critical wavelength by ~kc we thus know now that

� if θ = θc and δ > δc then ω1,2 = ±i
√

detM(~kc);

� if θ > θc and δ = δc then ω2 = Tr M(~kc) < 0 = ω1;

� if θ = θc and δ = δc then ω1 = ω2 = 0.

In the previous sections we have seen that there are two possible critical wave-
lengths when θ = θc:

(1) if η ≥ 0 then θc = 0 and ~kc = 0;
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(2) if η < 0 then θc = η2

4ζ and |~kc|2 = −η
2ζ .

We also saw that there are three possibilities when δ = δc:

(3) if (β, γ) lies above A then δc = 0 and ~kc = 0;

(4) if (β, γ) lies above A then δc =
−β+
√
β2−3αγ

27α2

(
−β2 + 6αγ + β

√
β2 − 3αγ

)
and |~kc|2 = 1

3α

(
−β +

√
β2 − 3αγ

)
;

(5) if (β, γ) ∈ A then δc = 0 and we have both critical wavelengths ~kc = 0

and |~kc|2 = 1
3α

(
−β +

√
β2 − 3αγ

)
.

3.2 Approximations, assuming δ, θ > 0 and O(ε)

In the previous section, Section 3.1, we have introduced the parameters α, β,
γ,δ, ζ, η and θ to describe the form of the determinant and the trace of M(~k)
respectively. That is, we have defined these parameters such that

detM(~k) = α|~k|6 + β|~k|4 + γ|~k|2 + δ;

TrM(~k) = −ζ|~k|4 − η|~k|2 − θ.

With these definitions the dispersion relation corresponding to the matrix M(~k)
became

0 = ω2 − TrM(~k)ω + detM(~k). (3.12)

We also found a way to characterize the (linear) stability of the related uniform
steady state: we need the determinant to be positive and the trace to be negative
for all wavelengths. For the determinant this leads to the condition δ > δc and
for the trace to θ > θc, where

δc = max

{
0,
−β +

√
β2 − 3αγ

27α2

(
β2 − 6αγ − β

√
β2 − 3αγ

)}
; (3.13)

θc = max

{
0,−η |η|

4ζ

}
. (3.14)

In Figures 3.4 and Figure 3.3 we have illustrated the different possible cases for
the trace and determinant respectively, for various combinations of parameters.

In this chapter we will assume that α and ζ are positive and of order O(1). This
is a logical assumption, since α = dadmκ and ζ = dmκ and these parameters
are all positive and typically of order O(1).

Because α and ζ are positive, it is possible to rescale the wavelength ~k and
the eigenvalue ω in the dispersion relation (see equation (3.12)). If we define

w =: α
2

ζ3 v and ~k =:
√

α
ζ2 ~m we obtain the related dispersion relation

0 = v2 − T (~m)v +D(~m),
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where T and D are the rescaled trace and determinant, which are defined as

T (~m) = −|~m|4 − ζ

α
η|~m|2 − ζ3

α2
θ;

D(~m) = |~m|6 +
ζ2

α2
β|~m|4 +

ζ4

α3
γ|~m|2 +

ζ6

α4
δ.

Now, since ζ and α are both positive and of order O(1), this rescaling does not
change the signs of the parameters, nor the order of them. Hence in our analysis
in this chapter it is sufficient to investigate only the parameter combinations
with α = 1 and ζ = 1.

Moreover, in this section we also assume that the parameters δ and θ are known
and of order O(ε). The definition of these parameters in equation (3.7) makes
this assumption reasonable. This assumption also implies that δ > 0 and θ > 0.
This means that we can only have critical wavelengths, when either δc > 0 or
θc > 0 (or both) and it also implies that ~k = 0 won’t be a critical wavelength.
This ensures that we can apply the weakly non linear analysis in the next section,
as this method tends to fail when the critical wavelength is kc = 0, because the
most critical perturbations are uniform in this case, whereas our method relies
on a non-uniform critical wave.

Now that we have discussed these additional assumption, we have the starting
point for the analysis in this section. We can formulate an approximation of
the bifurcation lines and the eigenvalue curves, using α, β, γ, δ and ζ, η, θ as
our parameters. Because of the cumbersome computations, that use a lot of
approximations and Taylor expansions we have put this analysis in Appendix B.

In this appendix it is shown that linear stability is guaranteed when η ≥ ηc and
γ ≥ γc, up to leading order. Here ηc := −2

√
θ. The definition of γc is more

difficult, as it depends on the order and sign of β. As this is very cumbersome
to work with, we just assume that β is ‘large enough’1. Then γc is defined as

γc :=

{
β2

4 if β < 0;

−2
√
δβ if β > 0.

This is the starting point for the analysis in this section. We start by reformu-
lating these stability conditions, but now in terms of the µ-parameters, using
µ11 and µ21 as our bifurcation parameters. Since these parameters contain the
effect of adding the density dependent movement speed to the system, this gives
us the best information of its added contribution to the dynamics of the system.

In Section 3.2.1 we determine the bifurcation lines in the (µ11, µ21)-parameter
plane. Subsequently in Section 3.2.2 we present some possible eigenvalue curves
on those critical bifurcation lines to illustrate the behaviour of the system near
its critical arrangements.

3.2.1 Approximations of bifurcation plane

We first inspect the case when η ≥ ηc (i.e. when the trace becomes positive).
In section B.1.1 we found that ηc = −2

√
θ. Thus O(ηc) = O(

√
ε). From our

1A precise statement can be found in Table B.3 in Appendix B
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definition we also have η = µ11 +ε. Since ε� √ε we know that near the critical
value we have η = µ11 = ηc up to leading order. Thus we know that η ≥ ηc is
obeyed when µ11 ≥ −2

√
θ. We can again define a critical value µ11,c := −2

√
θ

and thus we have the condition µ11 ≥ µ11,c that is needed for stability. On the
critical line µ11 = µ11,c we also know that the critical wavelengths must satisfy

|~kc|2 =
√
θ. Note that it is also perfectly fine to define µ11,c := −2

√
θ−ε, which

also includes the higher order term.

In section B.1.2 we also found that the sign and order of the critical γc depends
on the sign of β. Depending on the sign of β there is a different critical value
γc and therefore a different condition that needs to be satisfied. From our
definition of β = µ11 − µ40 it is clear that β > 0 if and only if µ11 > µ40 and
β < 0 if and only if µ11 < µ40. In the following we inspect the condition γ ≥ γc
for both of these cases separately. For technical reasons we’ll also assume that
O(µ10) = O(ελ) with λ > − 1

3 , such that we can neglect the term εµ10 in the
expression for γ.

Situation with µ11 < µ40 (β < 0)

In this case we have γc = β2

4 to leading order. Since β = µ11 − µ40 we have

γc =
(
µ11−µ40

2

)2
. Now the condition γ ≥ γc becomes

µ21µ30 ≥
(
µ11 + µ40

2

)2

.

If µ30 < 0 the inequality that needs to be satisfied becomes

µ21 ≤
(
µ11 + µ40

2

)2
1

µ30
.

and when µ30 > 0 it becomes

µ21 ≥
(
µ11 + µ40

2

)2
1

µ30
.

In both cases (i.e. regardless of the sign of µ30) we also know that the critical

wavelengths in this case are characterized by |~kc|2 = −β2 up to leading order.

Situation with µ11 > µ40 (β > 0)

Now β < 0 holds, we have γc = −2
√
βδ. Thus the condition γ ≥ γc now

becomes

µ21µ30 ≥ µ11µ40 − 2
√

(µ11 − µ40)δ.

If µ30 is negative the condition γ ≥ γc is equivalent to

µ21 ≤
µ11µ40

µ30
− 2

µ30

√
(µ11 − µ40)δ.
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µ11

µ30µ21

µ11 = −2
√
θ

µ40

−µ40

Γ+,t

Γ+,d,−

Γ+,d,+

(a) µ40 > 0.

µ11

µ30µ21

µ11 = −2
√
θ

µ40

−µ40

Γ−,t

Γ−,d,+

(b) µ40 < 0.

Figure 3.5 – The (µ11, µ30µ21) plane for µ40 > 0 (a) and µ40 < 0 (b). The
bifurcation lines Γ±,t/d are the thicker lines. The uniform steady state (me, ae)
is stable when the parameters are such that they lie above and to the right of
the bifurcation curves. Note that on Γ±,t the trace is zero and on Γ±,d the

determinant is zero for some specific wavelengths ~kc. The blue lines in these
sketches corresponds to the lines on which γ = γc and the purple line corresponds
to η = ηc. Note that β > 0 when µ11 > µ40, explaining the subscript + in the
naming of the bifurcation line.

and when µ30 > 0 is is

µ21 ≥
µ11µ40

µ30
− 2

µ30

√
(µ11 − µ40)δ.

In this case the critical wavelengths are |~kc|2 =
√

δ
β up to leading order.

Bifurcation diagram in the (µ11, µ21)-plane

In the previous paragraphs we have found that η ≥ ηc when µ11 ≥ −2
√
θ and

that γ ≥ γc when µ30µ21 ≥ µc where

µc :=

{(
µ11+µ40

2

)2
when µ11 < µ40;

µ11µ40 − 2
√

(µ11 − µ40)δ when µ11 > µ40.

We can now make a bifurcation diagram where we use µ30µ21 and µ11 as para-
meters. There are two different diagrams possible2 depending on the sign of
µ40. Both of these possibilities are drawn in Figure 3.5.

As we have seen before, we can also put conditions on the parameter µ21 itself.
Though, to do this, we need to know the sign of µ30. Moreover, we know that

2One could argue that there is another possibility, when we choose µ40 < 0 such that
−2
√
θ < µ40 < 0. We have excluded this situation per our assumption that β is big enough,

which is why we distinguish between µ40 positive or negative. We could refine this condition
by looking at the sign of µ40 + µ11,c = µ40 − 2

√
θ. Our conclusions will hold in this case, but

will only make the bookkeeping more bothersome, which is why we haven’t considered this in
our analysis.
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µ11

µ21

(a) µ40 > 0 and µ30 < 0.

µ11

µ21

(b) µ40 > 0 and µ30 > 0.

µ11

µ21

(c) µ40 < 0 and µ30 < 0.

µ11

µ21

(d) µ40 < 0 and µ30 > 0.

Figure 3.6 – The (µ11, µ21) plane for various possible values for µ40 and µ30.
The red regions denote the parameter region that corresponds to a stable uniform
steady state (me, ae). See also Figure 3.5.

µ21 ≥ 0 (because ∂m
∂a < 0, since adding additional algae to the system leads

to a lower movement speed of the mussels). Hence, the region of parameter
combinations (µ11, µ22) that leads to a stable uniform steady state, depends
on the sign of µ40 and µ30. The four possible forms of the stable regions are
sketched in Figure 3.6.

In this section we have only considered the cases in which O(β) = O(εµ) with
µ < 1/3 (i.e. when β is big enough). We could also inspect the situations in
which β is small. However, this only describes the behaviour very close to the
line µ11 = µ40 and is just a minor alteration of the line we already have found.
Since we are mainly interested in the general behaviour and not specifically at
the behaviour near µ11 = µ40 we don’t investigate this particular situation for
now.

Moreover, the previous analysis is done under the assumption that δ > 0 and
θ > 0. It is however possible to extend this analysis to δ = 0 and/or θ = 0 in a
very natural way: in fact the bifurcation diagrams does not change drastically.
The critical wavelengths and the eigenvalue curves on some of the bifurcation
lines change significantly though, as we see later on3.

3.2.2 Approximations of eigenvaluecurves

Now that we have identified the bifurcation lines in the (µ11, µ30µ21)-plane, we
want to determine the form of the eigenvalue curves on these lines. Here we are
especially interested in the value of the critical wavelengths.

3The situations in which δ < 0 or θ < 0 are less interesting, since they correspond to
situations for which the uniform steady state is unstable for a region of wavelengths.

80



In Section 3.1 we have already determined what values the critical wavelengths
can take, depending on the parameter combinations. That is, for parameter
combinations on Γt or Γd (see Figure B.2 and equation (B.4)) we have found
the following conditions for the critical wavelengths:

|~kc|2 =


√
θ, on Γt;

− 1
2β, on Γd when β < 0;√
δ
β , on Γd when β > 0.

In our bifurcation analysis of the (µ11, µ30µ21)-plane we came across all of these
possibilities. The lines Γ±,t correspond to Γt, while Γ±,d,+ correspond to Γd
with β > 0 and finally Γ+,d,− corresponds to Γd with β < 0. So we have

|~kc|2 =


√
θ, on Γ±,t;

− 1
2β, on Γ+,d,−;√
δ
β , on Γ±,d,+.

The critical eigenvalues on a bifurcation line for which Tr M(~kc) = 0 will be

called ~kc,t in the following, while we will denote the other critical eigenvalues,

for which detM(~kc) = 0, by ~kc,d.

In section B.3.4 we have various possible scenarios for the bifurcation of eigen-
value curves, depending on the the parameters β, γ and η and on which bifur-
cation line they lie. We observed that the eigenvalue curves change differently
depending on whether |~kc,t| < |~kc,d| or the other way around. The main dif-
ference between the two cases can be observed near Γt ∩ Γd where both sets of
critical wavelengths can be observed simultaneously and the form of the curve
depends on which wavelength is bigger.

The results in section B.3.4 were obtained under the assumption of a fixed β.
In our current situation β does however depend on µ11. This could lead to
problems in our analysis in case β is small on Γt. One of our assumption (i.e.
|β| � √ε near Γ±,t) prevents this from happening. So near Γt the sign and
order of β does not change and our observation from the last paragraph also
applies to our current problem setting.

The sign of the parameter µ40 determines the form of the bifurcation line in
the (µ11, µ30µ21)-plane as can be seen in Figure 3.5. When µ40 > 0 we see that
the lines Γ+,t and Γ+,d,− intersect. At the intersection point Γ+,t ∩ Γ+,d,− we

therefore have |~kc,t| =
√
θ and |~kc,d|2 = −β2 . Since we assumed that |β| � √ε

near Γ+,t we conclude that |~kc,t| < |~kc,d| in this situation4.

The other possible bifurcation diagram arises when µ40 < 0. Now we see that
Γ−,t intersects with the curve Γ−,d,+. Thus at Γ−,t ∩ Γ−,d,+ we now have

|~kc,t|2 =
√
θ and |~kc,d|2 =

√
δ
β . Thus when δ > θβ we again have |~kc,t| > |~kc,d|

and when δ < θδ the critical wavelength ~kc,d is smaller.

4Note that the conditions θ, δ, µ40 > 0 are indeed compatible: we can choose the para-
meters µ10, µ20, µ30 and µ40 such that µ40 > 0, µ10 < −µ40 and µ20µ30 < µ10µ40, e.g.
(µ10, µ20, µ30, µ40) = (−2,−3, 1, 1).
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Table 3.1 – Summary of the possible critical wavelengths at the different bifur-
cation curves at which detM(~kc) = 0. Also, the ordering of the wavelengths ~kc,d
and ~kc,t near Γ±,t is given. Note that ~kc,t =

√
θ for all cases. The results in this

table hold under the assumption θ > 0 and δ > 0.

Position additional condition |~kc,d|2 Ordering near Γ±,t

Γ+,d,+ |~kc,d|2 =
√

δ
β (N/A)

Γ+,d,− |~kc,d|2 = −β2 |~kc,d| � |~kc,t|
Γ−,d,+ µ20µ30 < −µ2

40 |~kc,d|2 =
√

δ
β |~kc,d| > |~kc,t|

Γ−,d,+ µ20µ30 > −µ2
40 |~kc,d|2 =

√
δ
β |~kc,d| < |~kc,t|

It is not immediately clear whether both orderings of |~kc,t| and |~kc,d| are actually
possible in our system, because the various conditions need not be compatible
with each other. Since we have assumed from the start that θ > 0 and δ > 0 we
already need µ10 < −µ40 and µ10µ40 > µ20µ30. Furthermore we inspected the
case with µ40 < 0. Now we need to determine the sign of δ − θβ for parameter
combinations under the aforementioned conditions. Since we are interested at
the behaviour near Γ−,t we know that |β| � √ε. Therefore β ≈ −µ40 to leading
order, since µ11 is of order

√
ε near Γ−,t. Hence we can instead look at the sign

of δ + µ40θ. Recalling the definitions of δ and θ from equation (3.7), we can
even simplify this to

sgn(δ + µ40θ) = sgn(µ10µ40 − µ20µ30 − µ40(µ10 + µ40)) = sgn
(
−µ20µ30 − µ2

40

)
Would the sign be negative then we obtain the condition µ20µ30 > −µ2

40, while
the additional condition becomes µ20µ30 < −µ2

40 when the sign is positive. Since
µ10 < −µ40 from one of the assumption we now see that both signs are therefore
possible.

A summary of the possible critical wavelengths on Γ±,d,± is given in Table 3.1.
We now want to give all possible eigenvalue curves on the bifurcation lines.
However, in our analysis in Section 3.1 we needed to distinguish between the
possibilities θ2 − 4δ > 0 and θ2 − 4δ < 0 (i.e. pure real or complex eigenvalues

near ~k = 0). So we now need to determine to what conditions this correspond
in our µ-parameters. Therefore we observe that

θ2 − 4δ =ε2
[
(µ10 + µ40)

2 − 4µ10µ40 + 4µ20µ30

]
=ε2

[
(µ10 − µ40)

2
+ 4µ20µ30

]
.

Thus there are only complex eigenvalues around ~k = 0 when we have µ20µ30 <

−
(
µ10−µ40

2

)2
and pure real eigenvalues when the inequality is reversed5.

Although it may seem now that there is a wide variety of eigenvalue curve
deformations possible, this is not true. There are only four essential different
scenarios we can encounter. Given a set of parameters µ10, µ20, µ30, µ40 we need
to look at the following two things to determine which scenario is relevant:

5Note that the sign of 4µ20µ30 + (µ10 − µ40)2 is not already fixed by the other conditions
on these parameters and therefore we actually need to distinguish between cases with and
without complex eigenvalues near ~k = 0.
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1. The ordering of ~kc,t and ~kc,d at µ11 = µ11,c;

2. Whether or not the eigenvalues are complex at ~k = 0 (i.e. the sign of
θ2 − 4δ).

In Figures 3.7-3.10 we have plotted the eigenvalue curves on the bifurcation lines
for the four possibilities. First, in Figure 3.7 we have inspected the situation in
which |~kc,d| > |~kc,t| and the eigenvalues are complex at ~k = 0. In Figure 3.8 we

again have |~kc,d| > |~kc,t|, but now the eigenvalues are real at ~k = 0. Then, in

Figure 3.9 the eigenvalues are again complex at ~k = 0, but now |~kc,d| < |~kc,t|.
Finally we inspected the case where the eigenvalues are real at ~k = 0 and
|~kc,d| < |~kc,t| in Figure 3.10.

Special cases θ = 0 and δ = 0

Up till now we have assumed that θ > 0 and δ > 0 are of order ε. In this section
we relax this assumption and try to determine what happens when θ = 0 or
δ = 0.

First, we consider what happens when θ = 0. In this case we find that, regardless
of the choice of parameters, we find that the eigenvalues at ~k = 0 have zero real
part. On Γ±,t the only critical wavelength now is ~kc,t = 0. Moreover, on the

lines Γ±,d,± we have the same critical wavelengths as before plus ~kc,t = 0.

Moreover, it is clear that |~kc,t| < |~kc,d| and θ2−4δ ≤ 0 for all possible parameters.
Therefore there is only one possible scenario that can describe this case. This
is illustrated in Figure 3.7. However, we must note that ~k = 0 corresponds to a
eigenvalue with zero real part in all of the pictured frames now that θ = 0.

The other interesting special case occurs when we choose our parameters such
that δ = 0. Again ~k = 0 is a critical wavelength for all possible parameter combi-
nations. Therefore we find an additional critical wavelength on Γ±,t. Moreover,
on Γ±,d,− we also find this additional critical wavelength. Finally on Γ±,d,+
there is now only one critical wavelength: ~kc,d = 0.

It is clear that at ~k = 0 we always have real eigenvalues. However, this time
there are still two scenarios possible: we have |~kc,d| > |~kc,t| when µ40 > 0 and

|~kc,d| = 0 < |~kc,t| when µ40 < 0. The former case corresponds to the frames in
Figure 3.8, while the latter corresponds to Figure 3.10.
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|~k|

Re(ω)

(a) On Γ+,d,+, far from Γ+,t.

|~k|

Re(ω)

(b) On Γ+,d,− far from Γ+,t.

|~k|

Re(ω)

(c) On Γ+,d,− close to Γ+,t.

|~k|

Re(ω)

(d) At Γ+,d,− ∩ Γ+,t.

|~k|

Re(ω)

(e) On Γ+,t close to Γ+,d,−.

|~k|

Re(ω)

(f) On Γ+,t far from Γ+,d,−.

Figure 3.7 – The eigenvalue curves on the bifurcation lines when |~kc,d| > |~kc,t|
and µ20µ30 < −

(
µ10−µ40

2

)2
. These plots are made with Matlab and the parameter

values we have used are: µ10 = −2, µ20 = −19/8, µ30 = 1, µ40 = 1 and we used
ε = 1

100
. Furthermore we have taken µ11 = 1.25 (a), µ11 = 0 (b) µ11 = −2

√
θ+ ε

(c), µ11 = −2
√
θ (d), µ21 = µ21,c + ε (e) and µ21 = 0.45 (f) and the other

parameter such that we effectively are on the right bifurcation line. Here µ21,c is
the value for µ21 at Γ+,d,− ∩ Γ+,t.
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|~k|

Re(ω)

(a) On Γ+,d,+, far from Γ+,t.

|~k|

Re(ω)

(b) On Γ+,d,− far from Γ+,t.

|~k|

Re(ω)

(c) On Γ+,d,− close to Γ+,t.

|~k|

Re(ω)

(d) At Γ+,d,− ∩ Γ+,t.

|~k|

Re(ω)

(e) On Γ+,t close to Γ+,d,−.

|~k|

Re(ω)

(f) On Γ+,t far from Γ+,d,−.

Figure 3.8 – The eigenvalue curves on the bifurcation lines when |~kc,d| > |~kc,t|
and µ20µ30 > −

(
µ10−µ40

2

)2
. These plots are made with Matlab and the parameter

values we have used are: µ10 = −2, µ20 = −17/8, µ30 = 1, µ40 = 1 and we used
ε = 1

100
. Furthermore we have taken µ11 = 1.25 (a), µ11 = 0.2 (b) µ11 = −2

√
θ+ε

(c), µ11 = −2
√
θ (d), µ21 = µ21,c + 2ε (e) and µ21 = 0.45 (f) and the other

parameter such that we effectively are on the right bifurcation line. Here µ21,c is
the value for µ21 at Γ+,d,− ∩ Γ+,t.
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|~k|

Re(ω)

(a) On Γ−,d,− far from Γ−,t.

|~k|

Re(ω)

(b) On Γ−,d,− close to Γ−,t.

|~k|

Re(ω)

(c) On Γ−,d,− ∩ Γ−,t.

|~k|

Re(ω)

(d) On Γ−,t.

Figure 3.9 – The eigenvalue curves on the bifurcation lines when |~kc,d| < |~kc,t|
and µ20µ30 < −

(
µ10−µ40

2

)2
. These plots are made with Matlab and the parameter

values we have used are: µ10 = 0, µ20 = −3/8, µ30 = 1, µ40 = −1 and we used
ε = 1

100
. Furthermore we have taken µ11 = 1 (a), µ11 = −0.10 (b) µ11 = −2

√
θ

(c) and µ21 = 0.5 (d) and the other parameter such that we effectively are on the
right bifurcation line. Note that the plots clearly show that the real part of the
eigenvalues are non-zero everywhere, whereas we reasoned there should be a few
specific wavelengths with zero real part, because we have used many leading order
approximations in our analysis. Would we have chosen a far smaller numerical
value for ε, these plots would look better. Also note that in (c) we did not choose
the correct value µ11,c but a bigger one for the same reason.
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|~k|

Re(ω)

(a) On Γ−,d,− far from Γ−,t.

|~k|

Re(ω)

(b) On Γ−,d,− close to Γ−,t.

|~k|

Re(ω)

(c) On Γ−,d,− ∩ Γ−,t.

|~k|

Re(ω)

(d) On Γ−,t.

Figure 3.10 – The eigenvalue curves on the bifurcation lines when |~kc,d| < |~kc,t|
and µ20µ30 > −

(
µ10−µ40

2

)2
. These plots are made with Matlab and the parameter

values we have used are: µ10 = 0, µ20 = −1/8, µ30 = 1, µ40 = −1 and we used
ε = 1

100
. Furthermore we have taken µ11 = 1 (a), µ11 = −0.10 (b) µ11 = −2

√
θ

(c) and µ21 = 0.5 (d) and the other parameter such that we effectively are on the
right bifurcation line.
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3.3 Modulation Equation when {detM = 0} is
crossed.

Up till now we have only inspected the linear stability of the uniform steady
states of equation (3.1). It could however happen that patterns arise in this
system, when the uniform steady state becomes unstable. To determine if this
happens we turn to a weakly non linear analysis in this section. The final goal
here is to find an amplitude equation that describes small perturbations of the
original uniform stationary state near a critical situation on the bifurcation line
Γ±,d,± (i.e. when the determinant changes sign).

More precisely we inspect deviations from this stationary state of the form
eikcxφ~v1A(ξ, τ), where 0 < φ � ε � 1, ~v1 is the most unstable ‘direction’ and
where ξ and τ are respectively the rescaled (slowly varying) spatial and temporal
variables. For this analysis we abandon the two-dimensional setting and we’ll
only inspect the one-dimensional situations (i.e. when we only have one spatial
variable).

We inspect only the behaviour on the bifurcation lines Γ±,d,± as we see that
this is the only relevant bifurcation line for our mussel system. For these
lines we know that the determinant is zero at the critical wavelengths. Hence
detM(kc) = 0 and ω1,2(kc) ≤ 0 are real. We need to choose our bifurcation
parameters. Since both µ11 and µ21 depend on our choice for the function v for
the speed of the mussels, we vary both of these parameters.

Conform the normal derivation of the amplitude equations we thus inspect what
happens when µ11 = µ11,c(µ21,c) + φ2r and µ21 = µ21,c + φ2s. Here r and s
are constants of order O(1) that need to be chosen such that the combination
(µ11, µ21) corresponds to linear instability of the uniform steady state (me, ae).
See also Figure 3.11.

The constant µ11,c(µ21) is such that (µ11,c(µ21), µ30µ21) ∈ Γ±,d,±. That is, this
specific combination must be chosen in such a way that it corresponds to a
critical situation in which the determinant of the Jacobian vanishes. We must
also make sure that we have chosen µ21,c such that it is far enough away from the
transitions in the bifurcation curve (i.e. far away from Γ±,t and from Γ±,d,∓).

The matrix M (see equation (3.6)) in this situation is (note that we have chosen
the parameters µ12 = 1 and µ41 = 1 as before for simplicity):

M =

(
−k4 − µ11,c(µ21)k2 + εµ10 − φ2rk2 −µ21k

2 + εµ20 − φ2sk2

εµ30 −εk2 + εµ40

)
(3.15)

In this chapter we first investigate the ‘critical’ matrix Mc and find the eigen-
values and eigenvectors. Then we turn to the rescaled spatial and temporal
variables ξ and τ and use these to postulate a good expansion for the pertur-
bation of the uniform stationary state. Finally we employ the full machinery
of the weakly non linear stability analysis and derive an amplitude equation for
this situation.
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Stable region

µ11

µ30µ21Γ−,t

Γ−,d,+

(µ11,c, µ30µ21,c)

−µ30sφ
2

−rφ2

Figure 3.11 – Sketch of the bifurcation plane (µ11, µ30µ21) when µ40 < 0 (see
also Figure 3.5). For the non-linear analysis we want to choose µ21,c and µ11,c

such that (µ11,c, µ30µ21,c) ∈ Γ−,d,+ as sketched in this figure. Then we want to
vary the parameters µ11 and µ21 a bit such that we are in the linear unstable
region, as depicted in the figure.

3.3.1 The matrix Mc

We have chosen µ11,c and µ21,c such that (µ11,c, µ30µ21) ∈ Γ+,d,+. The matrix
Mc that corresponds to this specific choice of parameters is given by

Mc =

(
−k4

c − µ11,c(µ21)k2
c + εµ10 −µ21k

2
c + εµ20

εµ30 −εk2
c + εµ40

)
.

The choice of parameters ensures that detMc = 0. Therefore, we know that
the eigenvalues are given by

ω1 = 0,

ω2 = Tr Mc = −k4
c − (µ11,c(µ21) + ε)k2

c + ε(µ10 + µ40).

We also need to find the corresponding eigenvectors. The first eigenvector ~v1 =
(x1, y1) must satisfy the following condition6:

εµ30x1 +
(
−εk2

c + εµ40

)
y1 = 0 (3.16)

The second eigenvector ~v2 = (x2, y2) must satisfy an other condition:

(εµ30)x2 +
(
k4
c + µ11,ck

2
c − εµ10

)
y2 = 0 (3.17)

Since the equation Mcx = b can only be solved when b = (b1, b2) ∈ Sp(~v2),
we obtain a solvability condition. This solvability condition will be the final
ingredient that ultimately will give us the desired amplitude equation. Hence a
vector b = (b1, b2) obeys the solvability conditions if and only if

εµ30b1 + (k4
c + µ11,ck

2
c − εµ10)b2 = 0.

6Note that we could also put these condition in an other form by reading of the other
row of the matrix. This won’t change the results, though it can make the formulas more (or
sometimes less) cumbersome.
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3.3.2 Perturbations

As stated before we are interested to see what happens when we perturb the
uniform steady state (me, ae) a little bit. We apply the standard way to model
this perturbation in our non linear stability analysis. That is, we model this
perturbation as a slow modulation of the most critical wave. That is a wave
with wavenumber k = kc. Thus we are interested in the following perturbation
of our uniform steady state:(

m̄
ā

)
= φ~v1A(ξ, τ)eikcx + c.c.+ h.o.t. (3.18)

Here c.c. means we also have the complex conjugates and h.o.t. means we also
have higher order terms, both in φ and in the fourier expansion. Recall that we
have 0 < φ� 1 here7. The vector ~v1 is the most unstable direction (i.e. its the
eigenvector corresponding to the eigenvalue ω = 0 in the matrixMc.). Finally ξ
and τ are the rescaled, slow spatial and temporal variables. The precise scaling
of these two variables, as determined by the characteristics of the eigenvalue
curves, is computed in the following sections.

Scaling of ξ

We first inspect the scaling of the spatial variables ξ. The scaling of ξ cor-
responds to the interval of wavelengths k for which the uniform steady state
(me, ae) is unstable when the bifurcation parameters are chosen such that (µ11, µ21) =
(µ11,c(µ21,c)+φ2r, µ21,c+φ2s). To determine this width, we can turn to the dis-
persion relation again and try to find for which wavelengths ω = 0 is a solution.
Thus we need to solve8

0 = detM(k).

In this case, the matrix M(k) is as in Equation (3.15). We can rewrite this
matrix as follows

M(k) =Mc(k)− φ2k2

(
r s
0 0

)
,

where the matrix Mc(k) is the matrix with the parameters such that they lie
precisely on the bifurcation line Γ±,d,±.

Working out the determinant of M(k) we can express it with the determinant
of Mc(k) as follows:

detM(k) = detMc(k) + εφ2k2
(
rk2 − rµ40 + sµ30

)
As we have chosen 0 < φ � 1 very small we know that k is very close to the
critical wavelength kc. Therefore we can define z := k − kc and we know that
this is a very small variable. Thus we can assume that |z| � 1 and |z| � |kc|.

7We use the symbol φ here instead of the perhaps more common used ε, because this
symbol is already used in the description of our system (see Equation (3.1))

8Note that in this reasoning we implicitly use that φ is as small and µ21,c is chosen well
enough to ensure that the sign of the trace remains unchanged for our small perturbations of
our parameters.
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The condition 0 = detM(k) can thus be approximated with a Taylor expansion.
Thus we have the condition

0 = detMc(kc) +
ddetMc(kc)

dk
z +

d2 detMc(kc)

dk2

z2

2

+ εφ2
[(
k2
c + 2kcz + z2

)
(sµ30 − rµ40) + r(k4

c + 4k3
cz + 6k2

cz
2)
]

+O(z3)
(3.19)

By construction we know that detMc(kc) = 0 and we also know that for the

derivative we have d detMc(kc)
dk = 0 (as otherwise kc won’t be the argument of a

maximum of this determinant9). An explicit computation of d2 detMc(kc)
dk2 gives

its form as
d2 detMc(kc)

dk2
= ε

8

3

(
β2 − β

√
β2 − 3γ − 3γ

)
.

This can only be zero when γ = β2/3 or when β ≥ 0 and γ < 0. Both of these
cases cannot happen, since δ > 0 and therefore the bifurcation line Γ±,d,± is
such that (β, γ) always lies below these possibilities in the plane.

Turning back to the expanded dispersion relation of equation (3.19) we can now

set detMc(kc) and d detMc(kc)
dk to zero. Moreover, we can only keep the highest

orders to obtain the relation

0 =
d2 detMc(kc)

dk2

z2

2
+ εφ2

[
k2
c (sµ30 − rµ40) + rk4

c

]
+O(φ2z) +O(z3).

Note that this approximation is only valid when |z2| � |φ2z|. So after we
have solved this equation for z we still need to check that this condition for
the approximation holds. When (sµ30 − rµ40) + rk4

c 6= 0 we then find that
O(z2) = O(φ2) Thus the scaling of z is now clear, since z = O(φ).

Note that when (sµ30− rµ40) + rk4
c = 0 we need to take the higher order terms

into account. This amounts to O(z) = O(φ2) and thus ξ = φ2x. However, we
do not focus on this situation as this is a very specific, which is not likely to
occur. Also note that we can neglect the order of ε as the determinant detMc

caries an ε in it as well, so they balance each other.

Scaling of τ

In the previous section we have found that z = O(φ) is a reasonable scaling.
Moreover we found that the wavelengths for which ω(k) = 0 are O(φ) close to
the original critical wavelength kc. So the unstable wavelengths (i.e. those for
which ω(k) ≥ 0) can be written as k = kc+φK where K of order O(1) is chosen
such that k lies in the interval with unstable wavelengths.

The eigenvalues corresponding to those wavelengths k will be written as ω(k).
Since k lies close to kc, we can approximate this eigenvalue with a Taylor ex-
pansion. As before we need to evaluate these eigenvalues for the new set of

9A simple computation with the explicit expression |kc|2 =
−β+
√
β2−3γ
3

will also quickly
verify that the derivative of the determinant in kc is zero.
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parameters. The determinant and trace of the matrix M(k) can now be ex-
pressed as

detM(k) = detMc(k) + εφ2k2
(
rk2 − rµ40 + sµ30

)
;

Tr M(k) = Tr Mc(k)− φ2rk2.

To compute the eigenvalue ω(k) we use the trace and the determinant. Thus
we now have

ω(k) =
Tr M(k)

2
+

1

2

√
(Tr M(k))

2 − 4 detM(k)

=
Tr Mc(k)

2
− φ2r

2
(3.20)

+
1

2

√
(Tr Mc(k)− φ2r)

2 − 4 detMc(k)− 4εφ2k2(rk2 − rµ40 + sµ30)

We now apply a Taylor expansion to the square root to obtain

ω(k) =ωc(k) +N(k)φ2 +O(φ4) (3.21)

Here ωc(k) is the eigenvalue curve with the original parameters (i.e. such that
they lie on Γ±,d,±) and N(k) is some tedious and complicated term, which
only vanishes for very specific choices of parameters. Finally we apply another
Taylor expansion, this time around the wavenumber k = kc. Since we have
defined k = kc + φK we thus obtain the following:

ω(k) =ωc(kc) +
dωc(kc)

dk
φK +

d2ωc(k)

dk2
φ2K2 +N(kc)φ

2 +O(φ3) (3.22)

Since dωc(kc)
dk = 0 and ωc(kc) = 0 we finally find that O(ω(k)) = O(φ2).

Now that we have established that O(ω(k)) = O(φ2) and O(k− kc) = O(φ) we
can introduce K and W > 0 both of order O(1) such that ω(k) = φ2W and
k = kc + φK. Now we write the family of linearly unstable, spatially periodic
perturbations of the uniform stationary state (me, ae) as

eikx+ω(k)t = ei(kc+φK)x+φ2Wt = eikcx+iKφx+Wφ2t = Alin(φx, φ2t)eikcx.

So from this observation we have justified the scaling ξ = φx and τ = φ2t as
these are the arguments of the amplitude term A.

3.3.3 The full perturbation

In equation (3.18) we have made an assumption on the perturbation that we
want to study. However this is not the full perturbation. Since our model is non
linear the higher order terms of both the Fourier Series and the Taylor Series
play a fundamental role. Therefore we must also incorporate these higher orders
in our analysis. For notational simplicity we write E := eikcx. Thus in order to
ultimately derive the modulation equations for this system we use the following
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Ansatz for the perturbations around our steady state:

E0

[
φ2

(
X02

Y02

)
+ . . .

]
(
m̄
ā

)
= E

[
φ

(
v11

v12

)
A(ξ, τ)+ φ2

(
X12

Y12

)
+ φ3

(
X13

Y13

)
+ . . .

]
E2

[
φ2

(
X22

Y22

)
+ . . .

]
+ c.c.

Here ~v1 = (v11, v22)T is the most unstable direction and A(ξ, τ) the amplitude
as before. Moreover Xij and Yij for i, j ∈ N0 are functions of ξ and τ .

In order to obtain the desired amplitude equations we need to substitute this
whole perturbation into our original system. This results in a gigantic expression
which has several different powers of E and φ. We can study this system at
each independent level. That is, we can gather all terms of the form φaEb for
a, b ∈ N0. Because of the chosen expansion we know that the system must
still hold for all these different possible levels. Ultimately the expression at the
a = 3, b = 1 level yields the amplitude equation when we apply the solvability
condition for (X13, Y13)T .

Before we are ready to exploit this machinery of the modulation equation we
first need to modify our original system. Earlier we have already linearized
this model in order to find the linear stability. Since we now want to find the
amplitude equation at the a = 3, b = 1 level we need the Taylor expansion of
all terms in the original model up to cubic order. That is, we must keep all
constant, linear, quadratic and cubic interactions (and we can forget about the
others as they have little effect).

3.3.4 Rewriting the equations

In the analysis thus far we have observed that we can set µ12 = 1 and µ41 = 1
without loss of generality. Since µ12 = dmκ and µ41 = da (see equations (3.5))
we can forget about two parameters in our governing equations, simplifying
them a little bit.

Moreover we are analysing the amplitude equation when there is only one spa-
tial dimension involved. Therefore we denote derivatives with subscripts. The
governing partial differential equation then reads{

mt = [dmv(v +mvm)mx + dmvmvaax]x −mxxxx + εH(m, a)

at = εaxx + εG(m, a)
(3.23)

Our next goal is now to rewrite this system so that we only have terms with
up to cubic interactions (and ignoring all higher order interactions). It is clear
that mt,mxxxx, at and axx are already in a good format, since they act linearly.
Thus we need to expand the other three terms. This can be done easily by
a Taylor expansion. This Taylor expansion must be done around the uniform
steady state (me, ae).

93



As before we define m̄ := m−me and ā := a− ae for the perturbations around
the uniform steady state. The expansions of the (general) interactions terms
H(m, a) and G(m, a) is clearly just the definition of the Taylor Series with two
variables. Hence we obtain

H(m, a) = He

+ (He
mm̄+He

aā)

+
1

2

(
He
mmm̄

2 + 2He
mam̄ā+He

aaā
2
)

+
1

6

(
He
mmmm̄

3 + 3He
mmam̄

2ā+ 3He
maam̄ā

2 +He
aaaā

3
)

+ h.o.t.

where the subscript denotes to what variable we need to differentiate and the
superscript reminds us that we need to take the value at the uniform steady state
(me, ae). Again h.o.t. means that there are additional higher order interactions
(but we will ignore them). Also note that for the other interaction term, G(m, a),
we find a similar expression but with the H’s replaced by G’s.

So now we only need to find a similar expansion for the last remaining term,
[dmv(v +mvm)mx + dmvmvaax]x. As taking the derivative does not alter the
order of the interactions, it suffices to only find the expansion for the expression
inside the brackets. For notational simplicity we split this in two terms, dmv(v+
mvm)mx and dmvmvaax. The expansion for the latter term is

v(m,a)mva(m,a)ax

=
(
ve + (vemm̄+ veaā) + (vemmm̄

2 + 2vemam̄ā+ veaaā
2)/2

)
· (me + m̄)

·
(
vea + (vemam̄+ vaaā) + (vemmam̄

2 + 2vemaam̄ā+ vaaaā
2)/2

)
· āx + h.o.t.

= vemev
e
aāx + veme(v

e
mam̄+ veaaā)āx + vem̄veaāx + (vemm̄+ veaā)mev

e
aāx

+ veme(v
e
mmam̄

2 + 2vemaam̄ā+ veaaaā
2)/2 āx

+ (vemmm̄
2 + 2vemam̄āx + veaaā

2)/2 mev
e
aāx

+ vem̄(vemam̄+ veaaā)āx + (vemm̄+ veaā)me(v
e
mam̄+ veaaā)āx + (vemm̄+ veaā)m̄veaāx

+h.o.t.

The terms in this expression with the same interactions can be taken together.
Doing this we can rewrite the Taylor expansion as

dmv(m, a)mva(m, a)ax

= ρaāx + ρmam̄āx + ρaaāāx + ρmmam̄
2āx + ρmaam̄āāx + ρaaaā

2āx. (3.24)

Here the constants ρ denote the coefficient before the relevant interacting terms.
More precisely these constants are defined as

ρa/dm := vemev
e
a

ρma/dm := vemev
e
ma + vevea + vemmev

e
a

ρaa/dm := vemev
e
aa + veamev

e
a

ρmma/dm := vemev
e
mma/2 + vemmmev

e
a/2 + vevema + vemmev

e
ma + vemv

e
a

ρmaa/dm := vemev
e
maa + vemamev

e
a + veveaa + vemmev

e
aa + veamev

e
ma + veav

e
a

ρaaa/dm := vemev
e
aaa/2 + veaamev

e
a/2 + veamev

e
aa
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Now we turn our attention to the other term, dmv(v+mvm)mx. With the same
approach with which we have tackled the last term, we can also approximate
this one:

v(v +mvm)mx

=

[
ve + (vemm̄+ veaā) +

1

2
(vemmm̄

2 + 2vemam̄ā+ veaaā
2)

]
{[
ve + (vemm̄+ veaā) +

1

2
(vemmm̄

2 + 2vemam̄ā+ veaaā
2)

]
+[me + m̄]

[
vem + (vemmm̄+ vemaā) +

1

2
(vemmmm̄

2 + 2vemmam̄ā+ vemaaā
2)

]}
m̄x

From this we find the following approximate expression:

dmv(v +mvm)mx

= σmm̄x + σmmm̄m̄x + σamām̄x + σmmmm̄
2m̄x + σmamm̄ām̄x + σaamā

2m̄x

This time these constants are defined as

σm/dm :=ve(ve +mev
e
m)

σmm/dm :=vem(ve +mev
e
m) + vevem + vemev

e
mm + vevem

σam/dm :=vea(ve +mev
e
m) + vevea + vemev

e
ma

σmmm/dm :=
1

2
vemm(ve +mev

e
m) +

1

2
vevemm +

1

2
vemev

e
mmm + vevemm

+ vem(2vem +mev
e
mm)

σmam/dm :=vema(ve +mev
e
m) + vevema + vemev

e
mma + vevema

+ vem(vea +mev
e
ma) + vea(2vem +mev

e
mm)

σaam/dm :=
1

2
veaa(ve +mev

e
m) +

1

2
veveaa +

1

2
vemev

e
maa + vea(vea +mev

e
ma)

With this information about the expansions of the relevant terms in our original
partial differential equation described in equation (3.23) we know what inter-
actions act up to cubic interactions. We use the notation as defined in the
previous paragraphs. Note that in our derivation of the expansions we have for-
gotten about the differential operator. In the complete system this differential
operator is crucial though - so we must not forget about it. The system, with
only interactions up to cubic order, is (where we have written m and a again,
instead of m̄ and ā for notational simplicity)

mt = σmmxx + σmmmmxx + σamamxx + σmmmm
2mxx + σmammamxx

+σaama
2mxx + σmmm

2
x + 2σmmmmm

2
x + σmamam

2
x

+ρaaxx + ρmamaxx + ρaaaaxx + ρmmam
2axx + ρmaamaaxx + ρaaaa

2axx

+ρaaa
2
x + ρmaama

2
x + 2ρaaaaa

2
x

+(σam + ρma)axmx + (σmam + 2ρmma)mmxax + (2σaam + ρmaa)amxax

−mxxxx

+εHe
mm+ εHe

aa+ εHe
mm/2m

2 + εHe
mama+ εHe

aa/2a
2

+εHe
mmm/6m

3 + εHe
mma/2m

2a+ εHe
maa/2ma

2 + εHaaa/6a
3;

at = εaxx + εGemm+ εGeaa+ εGemm/2m
2 + εGeamma+ εGaa/2a

2

+εGemmm/6m
3 + εGemma/2m

2a+ εGemaa/2ma
2 + εGeaaa/6a

3.
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As this is a large expansion it is easier for the eye if we introduce another few
parameters, so that we do need to write as few coefficients as possible. We
write hm := εHe

m, hmm := εHe
mm/2 and so on (and in a similar way g for the

coefficients with G). In addition to that we also write

τma := σam + ρma;

τmma := σmam + 2ρmma;

τama := 2σaam + ρmaa.

With these coefficients defined we can write the governing system in the most
easily readable form. In addition we have also chosen to color-code the equation:
all m’s in the equation are blue, while all a’s are in red. We must also recall that
we have perturbed our system a little bit, since we have chosen µ11 = µ11,c+φ2r
and µ21 = µ21,c + φ2s. Therefore the system also includes two terms involving
φ2. We must note that due to this perturbation we should also get terms of the
form φ2mmxx. These terms however only start to play a role at higher orders
and therefore we can forget about them in this analysis. Hene the system
becomes (note that the bold terms correspond to the bifurcated parameters) up
to cubic order (and therefore up to the O(φ3)-level):

mt = σmmxx + σmmmmxx + σamamxx + σmmmm
2mxx + σmammamxx

+σaama
2mxx + σmmm

2
x + 2σmmmmm

2
x + σmamam

2
x

+ρaaxx + ρmamaxx + ρaaaaxx + ρmmam
2axx + ρmaamaaxx

+ρaaaa
2axx + ρaaa

2
x + ρmaama

2
x + 2ρaaaaa

2
x

+τmamxax + τmmammxax + τamaamxax

−mxxxx + rφ2mxx + sφ2axx

+hmm+ haa+ hmmm
2 + hmama+ haaa

2

+hmmmm
3 + hmmam

2a+ hmaama
2 + haaaa

3

at = εaxx + gmm+ gaa+ gmmm
2 + gmama+ gaaa

2

+gmmmm
3 + gmmam

2a+ gmaama
2 + gaaaa

3

(3.27)

In the next section we use this system, with only interactions up to cubic ones, to
perform the weakly non linear analysis of the system. This gives us an equation
that describes the dynamics of the amplitude A(ξ, τ), which in turn gives us the
desired description of the patterns that arise in our system.

3.3.5 Weakly non linear stability analysis

We now do the tedious calculation that gives the modulation equations. We
derive the equations at various φaEb-levels. Note that we skip the E1φ level
here, as this is just the linearized equation, which we have already studied
extensively in the previous sections.

The E0φ2-level

First we find at the E0φ2-level the following system:{
0 = hmX02 + haY02 + 2α|A|2
0 = gmX02 + gaY02 + 2β|A|2
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where

α := hmmv
2
11 + hmav11v12 + haav

2
12

β := gmmv
2
11 + gmav11v12 + gaav

2
12

Note that in these expressions we don’t have any interactions of the form mmxx

or m2
x contributing. This can be explained by looking at mmxx+m2

x = (mmx)x.
Since we need mmx to be a wave E0 we find that the derivative vanishes at this
O(φ2) level. Therefore we won’t need to worry about these ugly terms at this
level, yet.

When hmga − hagm 6= 0 (Note that an equality can never occur, since this
would imply that the linear stability analysis already would have found that the
wavelength k = 0 is unstable. So we can safely assume that hmga−hagm 6= 0.),
we have the following solution:

(
X02

Y02

)
=

2|A|2
hmga − hagm

(
haβ − gaα
gmα− hmβ

)

The E2φ2-level

At the E2φ2-level we obtain the system{
0 = hmX22 + haY22 − 4k2

cσmX22 − 4k2
cρaY22 − 16k4

cX22 + (α+ α̂)A2

0 = gmX22 + gaY22 − 4k2
cεY22 + βA2

where
α̂ := −2k2

c

(
σmmv

2
11 + ρaav

2
12 + (σam + ρma)v11v12

)
.

The solution to this system is(
X22

Y22

)
=

A2

D22

(
(ha − 4k2

cρa)β − (ga − 4k2
cε)(α+ α̂)

gm(α+ α̂)− (hm − 4k2
cσm − 16k4

c )β

)
where

D22 :=
(
hm − 4k2

cσm − 16k4
c

)(
ga − 4k2

cε
)
−
(
ha − 4k2

cρa
)
gm

For this to make sense we need to have that the denominator D22 is not equal
to zero, which it is not, because the determinant of the critical matrix only
vanishes at the wavelength k = kc and therefore not at the wavelength k = 2kc,
which is essentially what the denominator is in this expression.

The E1φ2-level

At the E1φ2 level we see that all the higher order interaction terms vanish and
we are only left with the linear terms. Because we are now working on the
O(φ2)-level we also must take the derivative of the amplitude A into account.
Therefore at the E1φ2-level we obtain the following set of equations:{

0 = (hm − σmk2c − k4c)X12 + (ha − ρak2c)Y12 + 2ikcAξ
(
σmv11 + ρav12 + 2k2cv11

)
0 = gmX12 + (ga − εk2c)Y12 + 2ikcAξv12ε
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Now, since hm = εµ10, ha = εµ20, gm = εµ30, ga = εµ40, σm = µ11 and ρa = µ21

we can rewrite this in terms of the critical matrix Mc as follows:

Mc

(
X12

Y12

)
= −2ikcAξ

(
µ11v11 + µ21 v12 + 2k2

cv11

εv12

)

As we have seen before, we can only solve this for (X12, Y12) whenever the vector
(µ11v11+µ21 v12+2k2

cv11, εv12) is in the span of the eigenvector corresponding to
the non-zero eigenvalue. We can check that this is indeed the case, by substiution
of this vector in the solvability condition of equation (3.17). We obtain by using
the relation for the eigenvector ~v1 = (v11, v12) of equation (3.16)

µ30

(
(µ11 + 2k2

c )v11 + µ21v12

)
+ (k4

c + µ11k
2
c − εµ10)v12

= v12

(
(µ11 + 2k2

c )(k2
c − µ40) + µ21µ30 + k4

c + µ11k
2
c − εµ10

)
= 3k4

c + 2k2
c (µ11 − µ40) + (µ21µ30 − µ11µ40 − εµ10)

= 0

In this last step we use the fact that the derivative of the determinant of M
has a minimum in the wavelength kc. This is more apparent when we change
back to the greek symbols we introduced in equation (3.7). Then we see that
β = µ11 − µ40, γ = µ21µ30 − µ11µ40 − εµ10 and that the determinant of M is
k6 + βk4 + γk2 + δ. Thus clearly 3k4

c + 2k2
cβ + γ = 0 in the critical wavelength

k = kc.

Now since the system at the E1φ2 level satisfies the solvability condition we can
introduce a higher order amplitude A2, which again depends on the slow spatial
and time variables χ and τ . The expression for (X12, Y12) then can be expressed
as (

X12

Y12

)
= −2ikcζv12Aξ

(
1
0

)
+

(
v11

v12

)
A2(χ, τ) (3.28)

where

ζv12 :=

(
(µ11 + 2k2

c − ε)v11 + µ21v12

)
TrMc

=

(
µ11 + 2k2

c − ε
)
(k2
c − µ40) + µ21µ30

µ30 TrMc
v12.

The E1φ3-level

The final step in the derivation of the modulation equation is to find the system
at the E1φ3-level and then apply the solvability condition to the resulting
system. At this level we find that the system becomes

Mc

(
X13

Y13

)
= Aτ

(
v11

v12

)
−
( [

2σmikc + 4ik3
c

]
X12,ξ + 2ρaikcY12,ξ

2εikcY12,ξ

)

−
(
v11σm + 6k2

cv11 + ρav12

εv12

)
Aξξ−

(
Zm
Za

)
|A|2A−

(
−(rv11 + sv12)k2

c

0

)
A

(3.29)
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where Zm and Za are parameters that are defined as

Zm = v3
11

[
−3k2

cσmmm + 2k2
cσmmm + 3hmmm

]
+ v2

11v12

[
−3k2

cσmam − 3k2
cρmma + k2

cσmam + k2
cτmma + 3hmma

]
+ v11v

2
12

[
−3k2

cσaam − 3k2
cρmaa + k2

cρmaa + k2
cτama + 3hmaa

]
+ v3

12

[
−3k2

cρaaa + 2k2
cρaaa + 3haaa

]
+ v11x02

[
−k2

cσmm + 2hmm
]

+ v11y02

[
−k2

cσam + hma
]

+ v12x02

[
−k2

cρma + hma
]

+ v12y02

[
−k2

cρaa + 2haa
]

+ v11x22

[
−k2

cσmm + 2hmm
]

+ v11y22

[
σamk

2
c − 2ρmak

2
c + hma

]
+ v12x22

[
−2σamk

2
c + ρmak

2
c + hma

]
+ v12y22

[
−k2

cρaa + 2haa
]

Za = 3v3
11hmmm + 3v2

11v12hmma + 3v11v
2
12hmaa + 3v3

12haaa

+ 2gmmv11x02 + gmav11y02 + gmav12x02 + 2gaav12y02

+ 2gmmv11x22 + gmav11y22 + gmav12x22 + 2gaav12y22

Here the parameters x02, y02, x22 and y22 are defined by the following relations:(
X02

Y02

)
=

(
x02

y02

)
|A|2 and

(
X22

Y22

)
=

(
x22

y22

)
A2.

Now we can use the expression for (X12, Y12) that we found before in equation (3.28).
From this expression we can see that the derivative with respect to ξ satisfies:(

X12,ξ

Y12,ξ

)
=

(
−2ikcζv12Aξξ

0

)
+

(
v11

v12

)
A2,ξ

We can incorporate this in the expression that we found at this E1φ3-level. We
thus find the following system

Mc

(
X13

Y13

)
=

(
(rv11 + sv12)k2

c

0

)
A+Aτ

(
v11

v12

)
− 2ikc

( [
σm + 2k2

c

]
v11 + ρav12

εv12

)
A2,ξ −

(
Zm
Za

)
|A|2A

−
(
v11σm + 6k2

cv11 + ρav12 + 4ζk2
c

[
σm + 2k2

c

]
v12

εv12

)
Aξξ.

(3.30)

This last equation is again of the form Mcx = b. Thus we know it can only be
solved when b satisfies the solvability condition of equation (3.17). Since there
are various terms in the system that we obtained at this E1φ3-level (i.e. terms
with A2,ξ, A, |A|2A and Aτ ) we can just apply the solvability condition on these
various terms and later add them to obtain the amplitude equation.

A2,ξ: For this term we need to apply the solvability condition on the vector
([σm + 2k2

c ]v11 + ρav12, εv12)T . By noting that σm = µ11 and ρa = µ21 we
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find the following expression after applying the solvability condition:(
µ11 + 2k2

c

)
εµ30v11 + εµ30µ21v12 + (k4

c + µ11k
2
c − εµ10)εv12

= εv12

(
(µ11 + 2k2

c )(k2
c − µ40) + µ30µ21 + k4

c + µ11k
2
c − εµ10

)
= εv12

(
3k4
c + 2(µ11 − µ40)k2

c + µ30µ21 − µ11µ40 − εµ10

)
= 0

In the last step we once more have identified the expression as the condi-
tion that the determinant ofM has a minimum in the wavelength k = kc.
That is, in our greek parameters we can rewrite it to εv12(3αk4

c+2βk2
c+γ),

which is the expression for the derivative of the determinant, which needs
to vanish at the critical wavelength kc.

Aτ : Now the relevant vector is simply (v11, v12). Thus the coefficient before
Aτ in the amplitude equation is

εµ30v11 + (k4
c + µ11k

2
c − εµ10)v12

= v12

(
k4
c + k2

c (µ11 + ε)− ε(µ10 + µ40)
)

= − v12TrMc

This last step can be seen most easily when we convert the parameters
to the greek parameters ζ, η and θ. Then it is immediately clear that it
really is the trace.

Aξξ: For the coefficient corresponding to Aξξ the following vector is relevant(
v11µ11 + 6k2

cv11 + µ21v12 + 4ζk2
c (µ11 + 2k2

c )v12

εv12

)
To make life more easy we can recall that at the E1φ2-level we have verified
that the vector (µ11v11 +µ21v12 + 2k2

cv11, εv12) is contained in the span of
the eigenvector corresponding to the eigenvalue TrMc. Therefore we can
subtract this vector without modifying the solvability equation. Thus we
can just apply this condition on the following vector instead:(

4k2
cv11 + 4ζk2

c (µ11 + 2k2
c )v12

0

)
That results in the following coefficient for the term:

εµ30

(
4k2
cv11 + 4ζk2

c (µ11 + 2k2
c )v12

)
= εv12

(
4k2
c (k2

c − µ40) + 4µ30ζk
2
c (µ11 + 2k2

c )
)

|A|2A: For this term the vector is (Zm, Za) and the solvability condition then
gives the coefficient

εµ30Zm + (k4
c + µ11k

2
c − εµ10)Za

A: For this last term the vector is ([rv11 + sv12]k2
c , 0)T . Applied to the

solvability condition this results to the coefficient

εµ30k
2
c [−rv11 − sv12] = εv12k

2
c [−rµ40 + rk2

c + sµ30]

100



In the previous paragraphs we have determined the coefficients of the various
terms in the amplitude equation (by applying the solvability condition). We
can now, finally, combine all the terms and find an expression for our amplitude
equation. We find then the amplitude equation as

Tr Mc

ε
Aτ = BAA+BxxAξξ +BAAA|A|2A,

where

BA = k2
c (rk2

c − rµ40 + sµ30);

Bxx = −4k2
c

(
(k2
c − µ40) + µ30ζ(µ11 + 2k2

c )
)
;

BAAA =
−1

εv12

(
εµ30Zm + (k4

c + µ11k
2
c − εµ10)Za

)
.

With standard rescaling we can easily rewrite this partial differential equation
to the following one:

Aτ = RA+ bAξξ + h|A|2A (3.31)

where

R =
εBA

TrMc
=
εk2
c (rk2

c − rµ40 + sµ30)

TrMc
; (3.32)

b =
εBxx
TrMc

=
−4εk2

c

TrMc

[
k2
c − µ40 + µ30ζ(µ11 + 2k2

c )
]
; (3.33)

h =
εBAAA
Tr Mc

=
εµ30Zm + (k4

c + µ11k
2
c − εµ10)Za

−v12 Tr Mc
. (3.34)

We thus have established now that the dynamics near the critical bifurcation
line Γ±,d,± can be described with the Ginzburg-Landau equation as modulation
equation for the amplitude of the most critical wave eikcx.

With this amplitude equation we can find solutions of the original, full, system
of equation (3.1) of the form

(m(x, t), a(x, t)) = (me, ae) +A(εx, ε2t)eikcx (3.35)

where the amplitude A is a solution to the found real Ginzburg-Landau equation.
What kind of solutions this amplitude equation gives is determined by the signs
of the parameters R, b and h. A more in-depth study of this real Ginzburg-
Landau equation can be found in Appendix C.

3.4 Analytic study of the Mussel’s system

In the previous sections of this Chapter 3 we studied the model of equation (3.1)
as a general model, that is applicable to a vast variety of population models. In
this section we give an example of such an application, as we use it to model a
mussel-algae system.
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The general model, in equation (3.1) is however not directly applicable, as we
still need to fill in the forms for the interactions terms H and G. In Section 1.1.3
we have seen that we need to choose these as

H(m, a) = ecam− d̂m
km

km +m
m;

G(m, a) = (Aup − a)ρ− c

H
am,

where all parameters are positive for ecological reasons.

We can substitute these terms in our general model. However, we would end up
with very many parameters in this model. Therefore we scale the parameters to
reduce this number. In Section 1.2 we used a scaling for the reaction-diffusion
type of description. We cannot use the exact same scaling now, since we have to
deal with the movement dependent speed, which carries additional parameters.
We can however use a scaling that is very similar.

When we use the ‘quadratic fit’ movement speed v = c1m
2 + c2m + c3 − da

(see Section 1.1.4) it turns out we can use the following scalings: M =
√

c1
c3
m,

A = a
Aup

, τ = d̂mt, (x, y) =
√

dm
d̂m
c3(x′, y′). We must also define the following

parameters as well:

β̃ :=
c2√
c1c3

ν :=
1

km

√
c3
c1

d̃ :=
d1Aup
c3

D :=
da
dmc23

κ̂ := κ
d̂m
dm

1

c43
α̂ :=

ρ

d̂m

r :=
ecAup

d̂m
γ̂ :=

c

H

1

d̂m

√
c3
c1

With this scaling the model for our specific case, for the description of a mussel-
algae system that incorporates the density dependent movement speed of the
mussels, becomes{

∂M
∂τ

= ∇′
[
V
(
V +M ∂V

∂M

)
∇′M − VM ∂V

∂A
∇′A− κ̂∇′∆′M

]
+ ε
[
rAM − M

1+νM

]
∂A
∂τ

= εD∆′A+ ε[(1−A)α̂− γ̂AM ]

(3.36)

Here V is the redefined speed (i.e. V = M2+β̃M+1−d̃A). A similar approach is
also possible for the ‘piecewise’ description of the density dependent movement
speed, which results in a redefined speed as defined in equation (1.5). In the rest
of this section we just write v for the redefined speed for notational convenience.

In the remainder of this section we analyse this model of equation (3.36). To do
so we use the general results that we have developed in Section 3.1, Section 3.2
and Section 3.3. We start by finding the steady states in Section 3.4.1 and
subsequently determine the bifurcation lines in the (β̃, d̃)-plane in Section 3.4.2.
Finally we discuss the Ginzburg-Landau (amplitude) equation for this model in
Section 3.4.3
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Table 3.2 – In this table we have put the conditions under which the important
terms are either positive or negative. In order for our candidate uniform steady
state to be realistically possible, we need that all terms are either positive or
negative.

term positive negative
r − 1 r > 1 r < 1

γ̂ − α̂νr r < γ̂
α̂ν r > γ̂

α̂ν

γ̂ − α̂ν α̂ < γ̂
ν α̂ > γ̂

ν

all together 1 < r < γ̂
α̂ν , α̂ <

γ̂
ν

γ̂
α̂ν < r < 1, α̂ > γ̂

ν

3.4.1 Uniform Steady States and their stability

Following the general procedure of Section 3.1 we must first determine all pos-
sible uniform steady states. To do this we must solve the coupled equations{

0 = H(M,A) = M
(
rA− 1

1+νM

)
;

0 = G(M,A) = (1−A)α̂− γ̂AM.

There are two possible solutions to this problem. The first is easily identified as
(Me, Ae) = (0, 1). With a bit more effort we can also see that another solution

is (Me, Ae) =
(
α̂ r−1
γ̂−α̂νr ,

1
r
γ̂−α̂νr
γ̂−α̂ν

)
.

So we have two possible candidates for uniform steady states of our mussel-
algae interaction partial differential equation. However these solutions are not
necessarily possible in reality. To ensure this, we must have that Me ≥ 0 and
Ae ≥ 0. Moreover, since A is bounded by the concentration of algae in higher
sections of the water, we also must have that Ae ≤ 1.

Clearly the solution (Me, Ae) = (0, 1) obeys all of these conditions. For the other
possible uniform steady state this is not true in general. The non-negativity
condition implies that we need sgn(r − 1) = sgn(γ̂ − α̂νr) = sgn(γ̂ − α̂ν), since
the parameters α̂ and r are positive. In Table 3.2 we have identified under what
circumstances these terms have which sign. The other condition, Ae ≤ 1, is
coincidentally automatically obeyed when all terms have the same sign.

Proceeding with our general approach we now must find the linearized system.
We can use the general form that we have found in equation (3.3). For this
we however need to compute the derivatives of our interaction terms. These
interaction terms turn out to be given by

∂H

∂M
(M,A) = rA− 1

(1 + νM)2

∂H

∂A
(M,A) = rM

∂G

∂M
(M,A) = −γ̂A ∂G

∂A
(M,A) = −α̂− γ̂M

Thus the linearized system for our specific mussel-algae system is then easily
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verified to be
∂M
∂t = ~∇ ·

[
ve
(
ve +Me

∂ve
∂M

)
)~∇M + veMe

∂ve
∂A

~∇A− κ̂~∇∆M
]

+ε
[
(rAe − 1

(1+νMe)2 )M + rMeA
]
;

∂A
∂t = εD∆A+ ε[−γ̂AeM + (−α̂− γ̂Me)A].

Applying the standard perturbation (M,A) = (m̄, ā) exp
[
i(~k, ~x) + ωt

]
gives us

the eigenvalue problem

ω

(
m̄
ā

)
= M(~k)

(
m̄
ā

)
where the matrix M(~k) is now given by

M(~k) =

(
−κ̂|~k|4 − µ11|~k|2 + ε

[
rAe − 1

(1+νMe)2

]
−µ21|~k|2 + εrMe

−εγ̂Ae −εD|~k|2 + ε[−α̂− γ̂Me]

)
(3.37)

And thus the µ-parameters as introduced in equation (3.5) can now be found by

comparing the form of the matrix M(~k) in equation (3.37) and in equation (3.6).
We thus obtain the following values

µ10 = rAe −
1

(1 + νMe)2
µ20 = rMe

µ11 = ve

(
ve +Me

∂ve
∂M

)
µ21 = veMe

∂ve
∂A

µ12 = κ̂ µ40 = −α̂− γ̂Me

µ30 = −γ̂Ae µ41 = D

In the next subsections we first inspect the uniform steady state given by
(Me, Ae) = (0, 1) and determine its stability. Then we turn to the non-trivial
uniform steady state and try to determine the linear stability of this state as
well.

Linear Stability of (Me, Ae) = (0, 1)

To study the linear stability of the steady state (Me, Ae) = (0, 1), we first

determine the form of the matrix M(~k) using equation (3.37). To do so, we first

observe that µ21 = 0 and µ11 = v2
e . Hence the matrix M(~k) turns out to be

M(~k) =

(
−κ̂|~k|4 − v2

e |~k|2 + ε(r − 1) 0

−εγ̂ −εD|~k|2 − εα̂

)
.

From this matrix it is clear that the eigenvalues are ω1 = −κ̂|~k|4−v2
e |~k|2+ε(r−1)

and ω2 = −εD|~k|2 − εα̂. Obviously ω2 < 0 for all possible wavelengths ~k. The

maximal value for ω1 is obtained when ~k = 0. In this case ω1 = ε(r− 1). Hence
we know that ω1 < 0 when r < 1. Since the parameter r must be positive,
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this means that the steady state (Me, Ae) = (0, 1) is linearly stable only when
0 < r < 1.

The reasoning above already gives us a classification of the the (linear) stability
of the steady state. The general approach of section 3.1 was not needed though.
It is however good to check if we could obtain the same conclusion by using it.

Our first step in this is calculating the concrete values of the various µ-parameters
in correspondence with equation (3.38). We find (where we also immediately
indicate the signs if we are able to):

µ10 = (r − 1) µ20 = 0

µ11 = v2
e > 0 µ21 = 0

µ12 = κ̂ > 0 µ40 = −α̂ < 0

µ30 = −γ̂ < 0 µ41 = D > 0

And subsequently we need to find the parameters α through δ and ζ through θ.
The definitions of these parameters in equation (3.7) help us find them quickly:

α = κ̂D > 0 ζ = κ̂ > 0

β = v2
eD + α̂κ̂ > 0 η = (1− d)2 + εD > 0

γ = α̂v2
e − εD(r − 1) θ = −ε[(r − 1)− α]

δ = −εα̂(r − 1)

Since we know that the critical value δc is either zero or positive, we know that
it is necessary for δ to be positive in order for the state to be linearly stable.
Since α̂ is positive, this means that we need r < 1.

From this necessary condition we obtain that γ > 0. Now, since β and γ are
positive, we can look at Figure 3.3 to see that δc = 0 (and not something larger
than zero). Moreover, since η > 0 we know by looking at Figure 3.4 that θc = 0.
When r > 1 we know that θ > εα̂ > 0 and thus this confirms that the condition
r > 1 is also sufficient.

Hence our general approach gives us the same conclusion: when r ∈ (0, 1) the
uniform steady state (Me, Ae) = (0, 1) is linearly stable.

Linear Stability of the non-trivial uniform steady state

We now turn our attention to the more complex non-trivial uniform steady

state given by (Me, Ae) =
(
α̂ r−1
γ̂−α̂νr ,

1
r
γ̂−α̂νr
γ̂−α̂ν

)
. We skip the computation of the

matrix M(~k) for now and immediately give the µ-parameters. We obtain

µ10 =
νMe

(1 + νMe)2
µ20 = rMe (3.41a)

µ11 = ve

(
ve +Me

∂ve
∂M

)
µ21 = veMe

∂ve
∂A

(3.41b)

µ12 = κ̂ µ40 = − α̂

Ae
(3.41c)

µ30 = −γ̂Ae µ41 = D (3.41d)
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where we have used that rAe− 1
(1+νMe)2 = νMe

(1+νMe)2 and that −α̂−γ̂Me = − α̂
Ae

(analogous as what is used in [17] and section 1.2).

We can then also determine the parameters α, β, γ, δ, ζ, η and θ again. For these
we find

α = Dκ̂ ζ = κ̂

β = µ11D + κ̂
α̂

Ae
η = µ11 + εD

γ = µ11
α̂

Ae
− µ21γ̂Ae − ε

νMe

(1 + νMe)2
θ = ε

[
α̂

Ae
− νMe

(1 + νMe)2

]
δ = ε

α̂(r − 1)(γ̂ − α̂νr)
γ̂ − α̂ν

where we now have used that γ̂rAeMe − νMe

(1+νMe)2
α̂
Ae

= α̂(r−1)(γ̂−α̂νr)
γ̂−α̂ν .

At this point it is good to recall that this uniform steady state only exists when
sgn(r− 1) = sgn(γ̂− α̂νr) = sgn(γ̂− α̂ν). Now, if these all where negative then
we find that δ < 0. However, as we found in our general analysis, we know that
the critical δc ≥ 0. Hence in the case all these three terms are negative, the
steady state is linear unstable.

So from this point onwards we assume that all these terms are positive. Looking
back at Table 3.2 we see that this already puts the following constraints on our
parameter space: we need 1 < r < γ̂

α̂ν and γ̂
α̂ν > 1.

3.4.2 Bifurcation Lines

The bifurcation diagrams that we have constructed in Section 3.2.1 are general
diagrams that hold for general forms of the density dependent movement speed
v. However, we want to apply it to our specific mussel-algae system. As we
have seen before, in the previous section, in this specific model there is a trivial
uniform steady state (Me, Ae) = (0, 1) and a non-trivial uniform stationary

state (Me, Ae) =
(
α̂ r−1
γ̂−α̂νr ,

1
r
γ̂−α̂νr
γ̂−α̂ν

)
.

We expect patterns to arise at the moment this latter, non-trivial, steady state
becomes unstable. Therefore it is useful to find the bifurcation lines in this
situation. In the previous sections we have seen the various possible bifurcation
curves, in the general system (see Section 3.2.1 and Figure 3.5b). For this specific
mussel-algae system we have already found the values of the µ-parameters for
the non-trivial stationary state in equation (3.41).

We can just take these µ-values and the bifurcation lines in the (µ11, µ30µ21)-
plane. However the real parameters of the mussel system are not given by these
parameters, but rather by the parameters that are included in the system of
equation (3.36). From this we know that the parameters that determine µ11

constitute of β̃ and d̃ in case of the ‘quadratic fit’ speed v = vq and β̃, d̃ and
γ0 in case of the ‘piecewise’ speed v = vp. In this section we determine the
bifurcation planes expressed in terms of these parameters.
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In order to make these bifurcation curves in this case, we want to apply the
analysis we already have done in Section 3.2.1. In this analysis we have however
assumed that µ12 = κ̂ = 1 and µ41 = D = 1. Therefore we must do so here. As
noted before, this is just a result of (additional) scaling and does not influence
the generality of this approach.

Since µ40 = − α̂
Ae

< 0 is negative, we immediately know that only the bifurcation
diagram of Figure3.5b can correspond to our mussel-algae system. Thus we
know that the trace is negative only when µ11 > −2

√
θ and that the determinant

is positive when µ30µ21 > µ11µ40 − 2
√

(µ11 − µ40)δ.

We first look at the condition for the determinant (which is only valid and
relevant when the trace is negative, so that the root is well-defined). As we
have seen we have µ30 < 0 and µ40 < 0. Moreover, we also know that µ21 ≤ 0,
since adding algae never increases the movement speed per assumption. Hence
we find that the left-hand side is positive. When µ11 > 0 the right-hand side is
negative. Thus when µ11 > 0 the inequality always holds. Thus this condition
can only be violated when µ11 < 0.

The condition on the trace however tells us that µ11 > −2
√
θ = O(

√
ε). Thus

the critical line for µ11, that describes when the trace becomes positive is given
by µ11,C = −2

√
θ and as a consequence, the critical value for µ21, that tells us

when the determinant becomes negative, is also of order O(
√
ε). This essentially

is already captured in Section 3.2.1, in Figure 3.6d.

So we know that the uniform steady state is linear stable when µ11 > 0 and
unstable when µ11 < −2

√
θ. When µ11 is in between those two values the state

is unstable when µ21 is small enough and stable otherwise.

Bifurcation diagram for the ‘quadratic’ speed v = vq

When we take the ‘quadratic approach’ for the density dependent movement
speed v = vq, we can determine that the condition µ11 > 0 translates to the

condition 3M2
e + 2β̃Me + 1− d̃Ae > 0 and the condition µ11 < −2

√
θ translates

to (M2
e + β̃Me + 1− d̃Ae)(3M2

e + 2β̃Me + 1− d̃Ae < −2
√
θ. A straightforward

computation then tells us that the uniform steady state is linearly stable when

β̃ > β0 := −3M2
e + 1

2Me
+ d̃

A2
e

2Me

and unstable when

β̃ < β1 := −5M2
e + 3− 3dAe
4M − e +

√
(M2

e − 1 + dAe)2 − 16
√
θ

4Me
.

If the root does not exist, then the trace is always negative, for all wavelengths,
regardless of the value of β̃.

When β ∈ (β1, β0) then the stability is not clear. In this region it depends on
size of µ21. When this value is small enough the system is unstable, otherwise
it is stable. This generally corresponds to situations with d close to zero (i.e.
va ≈ 0) or close to the curve β̃2 = 4(1 − d̃) (i.e. v ≈ 0). It is possible to
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d̃

β̃

Γ′

Γt

Figure 3.12 – Schematic illustration of (half of the) parameter plane (β̃, d̃). Here
the black line denotes the curve β̃2 = 4(1− d̃) (i.e. v > 0). The blue lines denotes
the bifurcation line Γt. The red line, denoted as Γ′, denotes the line at which
µ11 = 0. Below the blue line the uniform steady state is unstable; above the red
line it is stable. Between Γ′ and Γt the stability is determined by the size of µ21.
Note that this is an illustration of one of the possible situation. These lines not
necessarily need to lie in the admissible region, dictated by v > 0.

determine a precise condition on the value of µ21 but this is very cumbersome
and does not give us more insight in the system. A sketch of the bifurcation
diagram (for v = vq) is given in Figure 3.12.

Bifurcation diagram for the piecewise speed v = vp

We can also inspect the bifurcations that occur in the system when we use
the piecewise formulation for the density dependent movement speed. In this
situation we have

v(M,A) =

{
v1(M,A) = 1− β̃M when M < β̃/2

v2(M,A) = 1−β̃2

2 + γ0e
−d̃A(M − β̃/2) when M > β̃/2

Since ∂v2

∂M > 0 we know that µ11 > 0 when M > β̃
2 . Hence in this situation

we always find a negative trace and a positive determinant, and thus a stable
uniform stationary point.

On the other hand, when M < β̃/2 we have ∂v1

∂A = 0 and therefore µ21 = 0. A
simple manipulation of the condition on the determinant then tells us that the
determinant becomes negative as soon as µ11 = (1− β̃Me)(1−2β̃Me) < 0. This
is a stricter condition than the one on the trace (i.e. µ11 < −2

√
θ).

Therefore we see that in this situation the state is stable when β̃ < 1
2Me

and
unstable otherwise. So it is clear that, with the piecewise description v = vp for
the density dependent movement speed, we have one bifurcation point and the
determinant (corresponding to the critical wavelength) changes sign.
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Note that in Section 2.1 we have studied the stability of uniform stationary
points of the (general) Cahn-Hilliard equation. Here we found a condition for
linear stability that can be translated to the condition µ11 > 0. This is more or
less the same conditions as we have found now, for the full system.

3.4.3 Modulation Equation

In Section 3.3 we have derived a general amplitude equation that can be used
to describe the behaviour of the system of equation (3.1) near critical circum-
stances. We studied the situation in which both µ11 and µ21 were perturbed a
little bit into the (linear) unstable region. In this section we apply this result
to the specific mussel system. This time we use β̃ as our (only) bifurcation
parameter, as this parameter influences the density dependent movement speed
the most. We use this to study small variation from the non-trivial steady state
of the mussel system as given in equation (3.36).

In Section 3.4.2 we showed that, when the determinant ofM(kc) changes signs,
we must have µ11 < 0 and µ21 ≤ 0 and both must be of order O(

√
ε) or

smaller. Moreover, we have seen in equation (3.4.2) that µ40 < 0 and µ30 < 0.
Therefore we know that we are dealing with the bifurcation line Γ−,d,− and that

k2
c ≈

√
δ/β (See Section 3.2.1). Upon noting that β = µ11 − µ40 ≈ −µ40 and

δ = O(ε) we find that k2
c = O(

√
ε). These approximations are necessary to

simplify the parameters found in the amplitude equation (3.31).

The parameter R

We first want to inspect the parameter R (see equation (3.32)). However, to do
so, we need to determine the signs of r and s first. Recall that r =

µ11−µ11,c

φ2

and s =
µ21−µ21,c

φ2 . What we do now is change the parameter β̃ - our bifurcation
parameter - from its critical value βc, as determine in Section 3.4.2. We set
β = βc − φ2z, where z > 0 when we use the quadratic movement speed.

It is not hard to determine how much the movement speed changes, and we can
see that v = vc − φ2zMe, vm = vcm − φ2z and va = vca where vc, vcm and vca are
the original (critical) values of these parameters. Working out the expression
for µ11 and µ21 (with this new parameter β̃ = β̃c − φ2z) we obtain

µ11 = µ11,c − φ2z(Me(vc +mvcm) + 2vcMe)

µ21 = µ21,c − φ2zvca

Since vc + mvcm = 0 and vca ≤ 0 we thus know that r < 0 and s ≥ 0. Now we
can turn to the value for R and first observe that we can simplify the expression
since k2

c = O(
√
ε), while µ40 and µ30 are assumed to be O(1). Hence we find

R =
εk2
c (rk2

c − rµ40 + sµ30)

TrMc
≈ εk2

c

sµ30 − rµ40

TrMc
(3.43)

Because r > 0, s < 0, µ30 < 0, µ40 < 0, k2
c > 0 and TrMc < 0 (because we are

assuming that we first cross the line Γ−,d,− and thus we assume that the trace
is still negative), we thus know that R > 0 for our mussel model.
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A similar approach can also be applied to the other description of the movement
speed, the ‘piecewise’ description v = vp. Here we must use β̃ = β̃c + φ2z. The
computations are similar and the end result is the same: R > 0, always.

The parameters b and h

Although we could manage to simplify the parameter R using approximations
and determine the sign, we are not able to do this for the parameters b and h
(see equation (3.33) and (3.34)). It is possible to reduce the number of terms
in these expression, but there are still way too many parameters to determine
what can happen. Therefore we should just take these as they are and compute
the values and signs each time we want to use the amplitude equations for a
new set-up, with different system parameters.

Because of all the approximations we have used in our analysis, these parameters
are also very sensitive to changes in the original parameter. A very small dif-
ference in the original parameters or the critical value of β̃c can already change
the signs of b and h - and we have no way to determine these exactly via the
means we have studied in this study. Therefore we don’t think we can present
accurate values or even signs for the constants b and h for the simulations that
we have done in Section 3.5.

If we were able to accurately find (at least) the signs of these parameters b and
h, we would be able to find the possible forms of the amplitude A. This in turn
gives us information about solutions of the original partial differential equation
(equation (3.1)) as these solutions have the form

(M(x, t), A(x, t)) = (Me, Ae) +A(εx, ε2t)eikcx (3.44)

More information about the solutions of the Real Ginzburg-Landau equation
can be found in Appendix C, which contains an in-depth study of all possible
(stationary) solutions to the Real Ginzburg-Landau for various possible signs of
the parameters R, b and h.

3.5 Simulations

In the previous sections of this Chapter we have studied the full model of
equation (3.1) analytically. In this section we supplement the thus gained know-
ledge via simulations of the specific mussel-algae system that we studied analyti-
cally in Section 3.4. As we did with our simulation of the Cahn-Hilliard equation
(i.e. ε = 0) in Section 2.3 we again only present the results of simulations of the
system with one spatial dimension.

In the previous sections we have not cared about the boundary conditions of the
system for our analysis. For simulations these boundary conditions are however
necessary. We just use an extension of the natural boundary conditions, as we
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have used them throughout Chapter 2, that is

mx(0) = mx(L) = 0;

mxxx(0) = mxxx(L) = 0;

ax(0) = ax(L) = 0.

These conditions, the so-called no-flux boundary conditions, make sure that
there is no mass flowing through the boundary of our domain.

As before, in Chapter 2, all simulations are started from an uniform state
(m, a)(x, 0) = (m0, a0), where a small perturbation of this state makes sure that
we won’t stay in an unstable stationary state. The Fortran code used to make
these simulations is kindly provided by Paul Zegeling and uses finite-difference
numerical methods on a moving grid.

Throughout this section we use these simulations to get an insight in the be-
haviour of the full population model as presented in equation (3.1). We study
both descriptions of the density dependent movement speed (see Section 1.1.4).

3.5.1 Short time behaviour

As we did in Chapter 2 we start by looking at the short time behaviour of the
system. We have seen, in the previous section of this chapter, that patterns
can arise out of the uniform steady states of the system, when the parameters
are chosen well enough. Specifically, we again obtained similar conditions as in
Chapter 2, as there is again a spinodal region in which we expect patterns to
arise.

In Figure 3.13 and Figure 3.14 we give the results of simulations of the system
where we use the ‘quadratic’ description of the density dependent movement
speed v = vq. In Figure 3.13 we tested the model when the concentration of

algae has no influence at the movement speed at all (i.e. d̃ = 0), whereas the
model of Figure 3.14 incorporates the effect of the algae on this speed. These
simulations show the existence of patterns in both cases. In fact, there is no
clear difference to be seen in these simulation between the patterns that arise
in both cases, or even between these patterns and the patterns for the model
without interaction, as seen in Section 2.3.

We also come to this conclusion when we study simulations of the ‘piecewise’
description for the density dependent movement speed v = vp. Results of these
simulations are shown in Figure 3.15 and Figure 3.16, for the model without and
with the effect of the algae concentration on the movement speed, respectively.
Again, both situations lead to similar patterns.

3.5.2 Long time behaviour

Now that we have established, via simulations, that the full system really pos-
sess patterns that are similar to the patterns seen in the standard Cahn-Hilliard
equation, it is logical to investigate the similarities even further. We have seen
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in Chapter 2 that the Cahn-Hilliard equation has a very specific long-time be-
haviour called Ostwald Ripening.

In the simulation in Section 2.3 we observed this ripening. There we found out
that the system chooses a pattern, then sticks to this patterns for a very long
time to eventually change the patterns to a new one with a smaller wavelength.
This process continues until all mass is located at one side of the domain.

So is this property also present in the full mussel model? To investigate this,
we have done several long-time simulations with our model. In Figure 3.17 and
Figure 3.18 we show the results of a simulations with respectively the ‘quadratic’
and the ‘piecewise’ density dependent movement speed. Although the switching
between patterns still happens in both of these, the ripening effect seems some-
what different than before: the mass transformation - that was clearly visible
in the Cahn-Hilliard simulations of Section 2.3 - is now less profound. We were
also not able to find a set of parameters that led to a realization of the global
minimizer. This all suggests that the long-time behaviour of the system is even
more subtle than before.

3.5.3 Other initial conditions

All previous simulations were executed with the steady state as starting point.
Though our analysis in the rest of this chapter has only focussed on those
situations, it is still interesting to see what happens when we start with other
initial conditions. We have seen that the simulations, starting from the steady
state, led to patterns when this steady state was located in the spinodal region.
So two natural questions come to mind: what happens when we start outside
this region, still keeping the steady state in it? And what happens if we do start
in the spinodal region, but the steady state is located outside of it?

We start with the first question. In Figure 3.19 we show the results from a
simulation in which the steady state is still located in the spinodal region, but
we start outside of it. What we see here is that the system first follows the (slow)
interaction terms until the system is (nearly) in the steady state. Subsequently
the familiar patterns start to appear coming from this steady state. Note that
the colours in these plots are relative. This explains why the patterns in these
plots may falsely seem less striking, while they are as prominent as before.

Then on to the next question. To answer this one, we simulate a system that
has a steady state that is not located in the spinodal region and set the initial
conditions such that we in fact do start in this region. In Figure 3.20 we have
plotted the results of such a simulation. We can see that this set-up does not
lead to patterns. Despite the system starting in the spinodal region, it still
follows the slow interaction terms. Therefore the system ultimately arrives at
its steady state (which is now stable, as it is not located in the spinodal region).

These simulations illustrate the behaviour of our full system. Initially the system
follows the (slow) interaction terms until it is close to the non-trivial steady
state. If this steady state is located in the spinodal region, then the behaviour of
the Cahn-Hilliard equation takes over and patterns arise. From the simulations
in this section it is not completely clear what happens to these patterns over
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very long time periods: not all patterns persist in the long run - as in the
standard Cahn-Hilliard equation - though the ripening effect seems different to
the standard Cahn-Hilliard (Ostwald) ripening.
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(a) mussel - top (b) mussel - side

(c) algae - top (d) algae - side

Figure 3.13 – Patternplot of a simulation of the initial behaviour of equation 3.1
with ‘quadratic’ speed v = vq on a one-dimensional domain [0, L] without algae
having an effect on the movement speed. In (a) the mussel density from the top
and in (b) from the side; (c) the algae density from top and in (d) from the side.
The colours denote the density, on a scale from low (blue) to high (red) densities.
Parameter values: L = 50, T = 1000, β̃ = −1.9, d̃ = 0, ε = 0.0005, κ = 0.05,
dm = 1, da = 1, α̃ = 1, γ̃ = 4, ν = 1, r = 2, m0 = 0.5, a0 = 0.333.

(a) mussel - top (b) mussel - side

(c) algae - top (d) algae - side

Figure 3.14 – Patternplot of a simulation of the initial behaviour of equation 3.1
with ‘quadratic’ speed v = vq on a one-dimensional domain [0, L] with algae
having an effect on the movement speed. In (a) the mussel density from the top
and in (b) from the side; (c) the algae density from top and in (d) from the side.
The colours denote the density, on a scale from low (blue) to high (red) densities.
Parameter values: L = 50, T = 1000, β̃ = −1.85, d̃ = 0.05, ε = 0.0005, κ = 0.05,
dm = 1, da = 1, α̃ = 1, γ̃ = 4, ν = 1, r = 2, m0 = 0.5, a0 = 0.333.
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(a) mussel - top (b) mussel - side

(c) algae - top (d) algae - side

Figure 3.15 – Patternplot of a simulation of the initial behaviour of equation 3.1
with ‘piecewise’ speed v = vp on a one-dimensional domain [0, L] without the algae
concentration having an effect on the movement speed. In (a) the mussel density
from top and in (b) from the side: (c) the algae density from top and in (d) from
the side. The colours denote the density, on a scale from low (blue) to high (red)
densities. Parameter values: L = 50, T = 3000, β̃ = 1.35, d̃ = 0, γ0 = 1, K = 1,
ε = 0.0005, κ = 0.01, dm = 3, da = 1, α̃ = 1, γ̃ = 4, ν = 1, r = 2, m0 = 0.5,
a0 = 0.333

(a) mussel - top (b) mussel - side

(c) algae - top (d) algae - side

Figure 3.16 – Patternplot of a simulation of the initial behaviour of equation 3.1
with ‘piecewise’ speed v = vp on a one-dimensional domain [0, L] with the algae
concentration having an effect on the movement speed. In (a) the mussel density
from top and in (b) from the side; (c) the algae density from top and in (d) from
the side. The colours denote the density, on a scale from low (blue) to high (red)
densities. Parameter values: L = 50, T = 9000, β̃ = 1.35, d̃ = 1, γ0 = 1, K = 1,
ε = 0.0005, κ = 0.01, dm = 3, da = 1, α̃ = 1, γ̃ = 4, ν = 1, r = 2, m0 = 0.5,
a0 = 0.333 115



(a) mussel - top (b) mussel - side

(c) algae - top (d) algae - side

Figure 3.17 – Patternplot of a simulation of the long-time behaviour of
equation (3.1) with ‘quadratic’ movement speed v = vq on a one-dimensional
domain [0, L] with algae having an effect on the movement speed. In (a) the
mussel density from top and in (b) from the side; (c) the algae density from top
and in (d) from the side. The colours denote the density, on a scale from low
(blue) to high (red) density. Parameter values: L = 50, T = 16000, β̃ = −1.85,
d̃ = 0.05, ε = 0.0005, κ = 0.05, dm = 1, d1 = 1, α̃ = 1, γ̃ = 4, ν = 1, r = 2,
m0 = 0.5, a0 = 0.3333.

(a) mussel - top (b) mussel - side

(c) algae - top (d) algae - side

Figure 3.18 – Patternplot of a simulation of the long-time behaviour of
equation (3.1) with ‘quadratic’ movement speed v = vp on a one-dimensional
domain [0, L] with algae having an effect on the movement speed. In (a) the
mussel density from top and in (b) from the side; (c) the algae density from top
and in (d) from the side. The colours denote the density, on a scale from low
(blue) to high (red) density. Parameter values: L = 50, T = 16000, β̃ = 1.35,
d̃ = 1, γ0 = 1, K = 1, ε = 0.0005, κ = 0.05, dm = 3, d1 = 1, α̃ = 1, γ̃ = 4, ν = 1,
r = 2, m0 = 0.5, a0 = 0.3333. 116



(a) mussel - top (b) mussel - side

(c) algae - top (d) algae - side

Figure 3.19 – Patternplot of a simulation of equation (3.1) with ‘piecewise’
speed v = vp on a one-dimensional spatial domain [0, L] without algae having
an effect on the density dependent movement speed, started from outside the
spinodal region. In (a) the mussel density from top and in (b) from the side;
(c) the algae density from top and in (d) from the side. The colours denote the
density, on a scale from low (blue) to high (red) densities. Parameter values:
L = 50, T = 9000, β̃ = 1.35, d̃ = 0, γ0 = 1, K = 1, ε = 0.0005, κ = 0.01, dm = 3,
da = 1, α̃ = 1, γ̃ = 4, ν = 1, r = 2, m0 = 0.6, a0 = 0.6, me = 0.5, ae = 0.3333.

(a) mussel - top (b) mussel - side

(c) algae - top (d) algae - side

Figure 3.20 – Patternplot of a simulation of equation (3.1) with ‘piecewise’
speed v = vp on a one-dimensional spatial domain [0, L] without algae having an
effect on the density dependent movement speed, started from inside the spinodal
region to a steady state located outside the spinodal region.In (a) the mussel
density from top and in (b) from the side; (c) the algae density from top and
in (d) from the side. The colours denote the density, on a scale from low (blue)
to high (red) densities. Parameter values: L = 50, T = 5000, β̃ = 1.35, d̃ = 0,
γ0 = 1, K = 1, ε = 0.0005, κ = 0.01, dm = 3, da = 1, α̃ = 1, γ̃ = 3.4, ν = 1,
r = 2, m0 = 0.5, a0 = 0.333, me = 5/7 ≈ 0.7, ae = 7/24 ≈ 0.3.
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Conclusion & Outlook

In this master thesis we have studied a modified predator-prey model, where
the normal, diffusive movement of one of the involved species is replaced with a
density-dependent fast movement speed. We have seen in Chapter 1 that this
leads to a Cahn-Hilliard equation for the movement of this specie. Combined
with the normal interaction terms, that work on a much slower time scale this
led to the following system describing a new sort of predator-prey model that
was our main object of study:

∂m

∂t
= dm∇

[
v

(
v +m

∂v

∂m

)
∇m+ vm

∂v

∂a
∇a− κ∇∆m

]
+ εH(m, a) (3.45a)

∂a

∂t
= εda∆a+ εG(m, a) (3.45b)

where v is the density dependent movement speed and H and G are the inter-
action terms.

We have seen that this description indeed leads to patterns in the animal po-
pulation. In Chapter 2 we have seen that the Cahn-Hilliard like movement (i.e.
setting ε = 0 in the system) already can explain the existence of patterns. We
have inspected the dynamics of solutions of the Cahn-Hilliard equation starting
from an uniform steady state. We found that these uniform states were de-
composed to form patterns only if they were located in the spinodal region, i.e.

when they obeyed the condition v(me)
(
v(me) +me

∂v(me)
∂m

)
< 0. We found no

qualitative difference between the two proposed descriptions for the speed of
Section 1.1.4 - only the amount of roots seems relevant.

When this condition is obeyed, we can expect patterns (when the domain is large
enough). These patterns however are not stable. When we wait long enough,
we see that the solution suddenly and rapidly changes to another pattern, with
a smaller typical wavelength. We also studied this process, called Ostwald
Ripening, and found that infinitesimal mass transportation was the key process
that is responsible for this ripening effect.

Real-life animal populations have no such thing; only whole, complete animals
can move and not fractions of animals. Therefore the found Ostwald Ripening
can come to a hold in real-life environments, whereas the equations tell us that
it should continue. This is a possible explanation for the wavelength selection
that was observed in experiments with mussels (see Figure 3.21).

It not easy to test this hypothesis. Mathematically it translates to a violation
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Figure 3.21 – Correlation between the typical wavelength of patterns for mus-
sels, in experimental set-up (blue and green lines) and in a numerical simulation
(purple). The dashed lines are linear fits over the initial behaviour (i.e. before
a wavelength is ‘selected’). For the numerical simulation the theorized power
law is used instead. In these plots we can clearly see that there is some sort of
wavelength selection in the experiments after some hours.

of the continuity assumption, as we essentially are saying that not all values are
possible for the density of mussels. Therefore one should really come up with
another, discrete model to really overcome this shortcoming. An other, more
pragmatic, solution would be to only allow mass transportation in the model
when enough mass is transported. This is however very difficult to incorporate
and gives a model that cannot be studied easily with the standard analytical
mathematical methods.

It is also possible to test this hypothesis via experiments. As argued before,
it seems that the Ostwald Ripening only stops because too little mass needs
to be transported. If this is the case, then the system would still favour an
other configuration - with a smaller wavelength - but it just can’t possible get
to that configuration. With an experiment one could try to find a way to help
the system get to this other, favourable, state. If this is possible - and the
system indeed can maintain this new, better configuration, then this suggests
that this infinitesimal mass transportation is indeed the cause to the observed
wavelength selection. This experimental approach is however also very difficult,
as it requires advanced knowledge about the preferred configurations and the
ability to set-up the animals in exactly that way.

In Chapter 3 we studied the full-system (i.e. ε 6= 0). Via simulations we
observed that the system first evolves (uniformly) to its uniform steady state.
Subsequently the system can possibly form patterns, but roughly only if the
steady state is located in the spinodal region - similarly to the single Cahn-
Hilliard equation. The patterns here also looked similar to the patterns created
by a Cahn-Hilliard equation.

We were however not able to understand the long time behaviour of these
patterns. It is yet unclear if the ripening effect is still present in this full system,
though simulations suggest it is. In the literature there are numerous studies
of the long time behaviour of the Cahn-Hilliard equation, using interactions be-
tween pulse solutions. Possibly these approaches can also be used on this full
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system to understand what happens in the long run to the patterns.

Moreover we have also only studied what happens to solutions that start from
uniform steady states. There are however also predator-prey models for which
this assumption is not valid at all. If we for example want to study the dynam-
ics of an elk herd and their prey, vegetation, it is more natural to model the
vegetation as a non-uniform concentration profile: vegetation is not distributed
equally, but there are places with lots of vegetation and places without any
vegetation at all. This already gives problems for the system with ε = 0, as it
leads to a modified Cahn-Hilliard equation of the form

∂m

∂t
= dm∇

(
v(m,x)

(
v(m,x) +m

∂v(m,x)

∂m

)
∇m+ v(m,x)m

∂v(m,x)

∂x
− κ∇∆m

)
.

A study of this equation can give new insights in the patterns that occur in
elk herd populations, but can also indicate what happens when we use non-
uniform starting configurations in other population models, for example in the
mussel-algae model that we have heavily studied in this thesis.

It is also interested to recall that the standard reaction-diffusion predator-prey
population model already leads to patterns, as we have seen in Chapter 1. The
patterns that we have found in this model however have typically (much) larger
wavelengths than the patterns that arise due to the density dependent movement
speed, as we have seen in Chapter 2 and Chapter 3. In mussel beds that are
found in nature, people have found several, layered patterns. For instance,
there are patterns with large wavelengths (in the order of metres) and patterns
with much smaller wavelengths (in the order of centimetres). Therefore one is
tempted to think that the reaction-diffusion system is a good description for
these large patterns, while the Cahn-Hilliard movement is good to capture the
smaller patterns that appear in a significant faster time frame.

However this must mean that there is a transition between the two models.
We have not been able to precisely formulate this transition: when you look
at the full model of equation (3.45) you can try to scale the temporal and
spatial variables and ignore the smallest terms, but this does not lead to a
reaction-diffusion model, because of the terms v

(
v +m ∂v

∂m

)
and vm∂v

∂a that give
non-linearities that are not present in the normal reaction-diffusion equation.
Possibly there is another way to connect both models, or similar models, which
seems an interesting study for a follow-up research.

Finally we must acknowledge that most of this thesis covered the situation in
only one spatial dimension. In reality this is of course not realistic at all, and the
addition of a second spatial dimension is absolutely necessary to be able to get
good comparisons between the mathematical results and real-life experiments -
as for example the ripening effect is described differently in the one-dimensional
Cahn-Hilliard equation, compared to the two-dimensional equation. The ana-
lytical approach would however become even more tedious and frankly should
only be done when we have a better understanding of the dynamics of the model
with one spatial dimensions - for instance if we have a better understanding of
what the modulation equations tell us in this case.
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Appendix A

Modulation Equation for
Reaction-Diffusion system

In Section 1.2 we studied a reaction-diffusion system that describes the inter-
action between mussels and algae. We used a linear stability analysis to de-
termine the stability of the uniform stationary states of this system. We also
want to study the possibility of patterns arising from these uniform states, when
the parameters are just ‘a little unstable’. For this we apply weakly non-linear
stability analysis and we need to find the relevant modulation equations, as we
discussed in Section 1.2. This computation is very technical and cumbersome
and therefore it is included in this appendix for those who are interested in the
details.

In the rest of this section we first determine the relevant scalings for the slow
space and time variables, ξ and τ . Then we want to substitute the Ansatz of
equation (1.16) into the our scaled system (equation (1.6)), where we should be
carefull about the ‘higher order terms’ that start to play a role. Finally this gives
us a partial differential equation for the amplitude A in our Ansatz that in turn
then gives us an approximation of the solutions of our orignal reaction-diffusion
equation.

Slow spatial variable ξ and slow time variable τ

In our linear stability analysis we have found an expression for the critical µ̃c(k)
in equation (1.13). We know that ∂µ̃c

∂k (kc) = 0 per construction. In general
∂2µ̃c
∂k2 (kc) 6= 0. For k close to kc we have µ̃c(k) = µ̃c(kc) + ∂2µ̃c

∂k2 (kc)[k − kc]2. We

can define K := k − kc and hence find µ̃c(kc +K) = µ̃C + ∂2µ̃c
∂k2 (kc)K

2. We are
interested in the situation where µ̃ = µ̃C − ε2s. This means that when µ̃ lies
on the curve {(k, µ̃c(k)} we find that K is of order O(ε). Therefore there is a
region of unstable wavelengths around kc of size proportional to ε.

We also want to know how much the eigenvalues change when µ̃ is changed a
little (and therefore when k is changed a little). For this we turn back to the
dispersion relation in equation (1.10). We want to compute ω(k) now for the
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band of unstable wavelengths. Hence we must find ω(k) in the situation with
µ̃ = µ̃C − ε2s and k2 = k2

c + ε2L (with L some order O(1) constant). Solving
this dispersion relation gives us the following form for ω1,2:

ω1,2 =
B̄ + ε2B̂

2γ̃
± 1

2γ̃

√
B̄ − 4γ̃C̄ + ε2

(
2B̄B̂ − 4γ̃Ĉ

)
,

where

B̄ = −
(

(1 + γ̃µ̃C)|kc|2 + α̃/Ae − γ̃
Me

(1 +Me)2

)
B̂ = −

(
−s|kc|2 + (1 + γ̃µ̃C)L

)
+O(ε2)

C̄ = µ̃C |kc|4 + |kc|2
(
µ̃C α̃/Ae −

Me

(1 +Me)2

)
+
α̃(r − 1)(1− α̃r)

1− α̃

Ĉ = 2µ̃C |kc|2L− s|kc|4 + L

(
µ̃C α̃/Ae −

Me

(1 +Me)2

)
− |kc|2sα̃/Ae +O(ε2)

Using a Taylor expansion of the root and noting that B̄
2γ̃ + 1

2γ̃

√
B̄2 − 4γ̃C̄ = 0,

because per construction of the critical parameter µ̃C and the critical wavelength
kc we need to have ωc = 0 as well. Hence we must conclude that ω ∝ ε2 as the
found expression at the O(ε2)-level does not vanish in general and there is no
O(ε)-level.

Now this means that in this specific situation (i.e. k = kc + εk̄, µ̃ = µ̃C − ε2s
and ω = ωc + ε2ω̄ with k̄ and ω̄ of order O(1)) the waves is proportional to

exp
[
i[kc + εK̄]x+ ε2ω̃t

]
= exp[ikcx] exp[iεK̄x) + ω̃ε2t] = Alin(εx, ε2t)eikcx.

So we can express these deviations in terms of an amplitude A and the wave
with wavelength kc. The parameters of the function Alin are hence suited as
our slow spatial and time variables. Thus we should define ξ = εx and τ = ε2t.

Preparations for the Weakly Non-Linear Analysis

We want to use the assumed form of the perturbation of equation (1.16). To do
this, we first must rewrite the rescaled reaction-diffusion equation using Taylor
approximations of the non-linear terms (around the uniform stationary state).
We must make sure that we only have interactions up to cubic order (this
depends on the specific scalings we have found for µ̃, ξ and τ). So our first
task is to compute the various derivatives of H(M,A) = rMA − M

1+M and
G(M,A) = α̃(1−A)−MA and evaluate them at (Me, Ae).
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∂H

∂m
(Me, Ae) =

Me

(1 +Me)2
,

∂G

∂m
(me, ae) = −Ae,

∂H

∂a
(Me, Ae) = rMe,

∂G

∂a
(me, ae) = −α̃−Me = −α̃/Ae

∂2H

∂m2
(Me, Ae) =

2

(1 +Me)3
,

∂2G

∂m2
(me, ae) = 0,

∂2H

∂m∂a
(Me, Ae) = r,

∂2G

∂m∂a
(Me, Ae) = −1,

∂2H

∂a2
(Me, Ae) = 0,

∂2G

∂a2
(me, ae) = 0,

∂3H

∂m3
(Me, Ae) =

−6

(1 +Me)4
,

∂3G

∂m3
(me, ae) = 0,

∂3H

∂m2∂a
(Me, Ae) = 0,

∂3G

∂m2∂a
(Me, Ae) = 0,

∂3H

∂m∂a2
(Me, Ae) = 0,

∂3G

∂m∂a2
(Me, Ae) = 0,

∂3H

∂a3
(Me, Ae) = 0,

∂3G

∂a3
(Me, Ae) = 0.

So the reaction-diffusion system can now be rewritten to a form that only in-
volves up to cubic interactions. This formulation is valid for all small pertur-
bations of the form (M,A) = (Me, Ae) + (M̄, Ā) and for the parameter value
µ̃ = µ̃C − ε2s. The system is in this situation given by

∂M̄

∂t
= µ̃C∆M̄ +

Me

(1 +Me)2
M̄ + rMeĀ+ rM̄Ā+

1

(1 +Me)3
M̄2

− 1

(1 +Me)4
M̄3 − ε2s∆M̄ (A.1a)

γ̃
∂Ā

∂t
= ∆Ā−AeM̄ − α̃/AeĀ− ĀM̄ (A.1b)

If we use the Ansatz of equation (1.16), we see that the interaction terms gen-
erate terms with other wavelengths - for example eikcxeikcx = ei2kcx. For no-
tational convenience we write E := eikcx. These other waves play a role in the
system and we therefore must consider them when we try to find the partial
differential equation for the amplitude A. So we must expand our Ansatz and
consider perturbations of the form

(M̄, Ā) = E0 [ ε2 ~A20(χ, τ) + . . . ]

+ E1 [ε~v11A(χ, τ) +ε2 ~A21(χ, τ) + ε3 ~A31(χ, τ) + . . . ]

+ E2 [ ε2 ~A22(χ, τ) + . . . ]

+ c.c. +h.o.t.

The functions ~A20, ~A31, ~A21 and ~A31 are all functions of the slow time and
spatial variables τ and ξ. We denote ~Aij = (mij , aij) for all i, j ∈ N.
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The following step in the weakly non-linear stability analysis involves using this
complete Ansatz on the system of equation (A.1). Then we inspect the resulting
system at each εi

′
Ej
′

level. Doing so gives us information about all functions
~Aij and finally at the O(ε3E1)-level we obtain a partial differential equation
for the amplitude A. In the next sections we inspect the system at the various
levels, working our way up to the system at the O(ε3E1)-level.

The O(ε1E1)-level

At the O(ε1E1)-level we just find the linearised system again. That is, we just
have the eigenvalue problem MC~v11 = λ1~v11 where λ1 = 0 and

MC :=

(
Me

(1+Me)2 − µ̃Ck2
c rMe

−Ae − α̃
Ae
− k2

c

)

After a fairly long computation one can check that an eigenvector is given by

~v11 = (m11, a11) =
(
−r(1− α̃)2(1 +

√
1− α̃r), (1− α̃r)2

)
.

It can also be checked that the other eigenvector is ~w = (µ̃Cm11, a11), with the
corresponding eigenvalue ω1 = (µ̃C −1)

(
k2
c + α̃/Ae

)
. In the end we see that the

amplitude equation appears as a consequence of the solvability condition that
Mcx = ~b = (b1, b2) can only be solved for x if ~b ∈ Sp(~ω), because the other
eigenvalue is zero. Thus we find the solvability condition for this system as

a11b1 − µ̃Cm11b2 = 0. (A.2)

The O(ε2E0)-level

At the O(ε2E0)-level the resulting system is

0 =
Me

(1 +Me)2
m20 + rMea20 + 2φ|A|2

0 = −Aem20 −
α̃

Ae
a20 + 2θ|A|2

where φ and θ are defined as

φ := rm11a11 +
m2

11

(1 +Me)3

θ := −m11a11

Using standard linear algebra, we can solve this system and find the solution

~A20 =

(
m20

a20

)
=

2|A|2
rMeAe − Me

(1+Me)2
α̃
Ae

(
rMeθ + α̃

Ae
φ

−Aeφ− Me

(1+Me)2 θ

)
.
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The O(ε2E2)-level

At this level we obtain the system

0 =

(
Me

(1 +Me)2
− 4µ̃Ck

2
c

)
m22 + rMea22 + φA2

0 = −Aem22 +

(
− α̃

Ae
− 4k2

c

)
m20 + θA2

This system has the following solution

~A22 =

(
m22

a22

)
=
A2

D

(
rMeθ + (α̃/Ae + 4k2

c )φ
−Aeφ+ (4µ̃Ck

2
c − Me

(1+Me)2 )θ

)
,

where

D = rMeAe −
Me

(1 +Me)2

α̃

Ae
− 4k2

c

(
Me

(1 +Me)2
− µ̃C

α̃

Ae

)
+ 16µ̃Ck

4
c .

The O(ε2E1)-level

Working out the system on the O(ε2E1)-level we find the following system

Mc
~A21 = −2ikcAξ

(
µ̃Cm11

a11

)
.

Clearly the right-hand side obeys the solvability condition. Hence the general
solution of this system is

~A2 =
−2ikcAξ

ω1
~w +A2(ξ, τ)~v11.

where ω1 is the eigenvalue corresponding to the eigenvector ~w and A2 is a second,
higher order amplitude, which again depends on the slow space variable ξ and
the slow time variable τ . With standard linear algebra we can also write this
solution as

~A2 =
−2ikcAξ

ω1
(µ̃C − 1)

(
m11

0

)
+A2(ξ, τ)~v11 (A.3)

where A2 now denotes another amplitude.

The O(ε3E1)-level

Finally we can look at the ε3E1-level. Here we must note that we now also
need to take the expansion in µ̃ into account (i.e. µ̃ = µ̃C − ε2s). The resulting
system at this level is

Mc
~A31 =

(
m11

γ̃a11

)
Aτ + s|kc|2

(
m11

0

)
A−

(
µ̃Cm11

a11

)
Aχχ

−
(
r[m11(y20 + y22) + a11(x20 + x22)] + 2m11(x20 + x22)(1 +me)

−3

−[m11(y20 + y22) + a11(x20 + x22)]

)
|A|2A

+ 3
m3

11

(1 +me)4

(
1
0

)
|A|2A− 2ikc

(
µ̃Cm21,χ

a21,χ

)
(A.4)
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Here we have denoted

~A20 =

(
m20

a20

)
=

(
x20

y20

)
|A|2

and

~A22 =

(
m22

a22

)
=

(
x22

y22

)
A2

For notational convenience we write X := x20 + x22 and Y := y20 + y22. Now,
we need to apply the solvability condition of equation (A.2) to the expression
on the right hand side of equation (A.4). This gives us

0 = a11m11(1− γ̃µ̃C)Aτ + s|kc|2a11m11A

− 2iµ̃C(a11[kcm12,χ]−m11[kca12,χ])

− [
(
µ̃Cm11a11 + ra2

11 +m11a11(1 +me)
−3
)
X +

(
µ̃Cm

2
11 + rm11a11

)
Y

−m3
11a11(1 +me)

−4]|A|2A (A.5)

If we recall the solution for ~A21 in equation (A.3) we can eliminate the second
amplitude A2 and we obtain the following equation

0 = a11m11(1− γ̃µ̃C)Aτ + s|kc|2a11m11A

− 4a11m11µ̃C(µ̃C − 1)/ω1k
2
cAχχ

− [
(
µ̃Cm11a11 + ra2

11 +m11a11(1 +me)
−3
)
X +

(
µcm

2
11 + rm11a11

)
Y

−m3
11a11(1 +me)

−4]|A|2A (A.6)

This equation can be rewritten as

Aτ =
s|kc|2
γ̃µ̃C − 1

A+
4µ̃C
ω1

µ̃C − 1

1− γ̃µ̃C
k2
cAχχ +

h

a11m11(1− γ̃µ̃C)
|A|2A,

where

h =
(
µ̃Cm11a11 + ra2

11 +m11a11(1 +Me)
−3
)
X +

(
µ̃Cm

2
11 + rm11a11

)
Y

−m3
11a11(1 +Me)

−4.

Now, we introduce another triplet of quantities for notational convenience:

ρ1 := − s|kc|2
γ̃µ̃C − 1

;

ρ2 := −4µ̃C
ω1

µ̃C − 1

γ̃µ̃C − 1
= − 4µ̃C

γ̃µ̃C − 1

1

|kc|2 + α̃/Ae
;

ρ3 := − 1

a11m11

1

(γ̃µ̃C − 1)
.

where we have used the value of the eigenvalue ω1. That is

ω1 = (µ̃C − 1)
(
|~kc|2 + α̃/Ae

)
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In section 1.2.2 we have found two condition (i.e. equation (1.11) and (1.12)) on
the system’s parameters, which were necessary to possible have stable uniform
steady state solution (me, ae). As we discussed, these two conditions are satisfied
for the specific parameters of the mussel-algae system. From the first inequality,
equation (1.11), we can obtain the inequality

µ̃C γ̃ = γ̃
Me

(1 +Me)2

1

2|kc|2 + α̃/Ae
<

α̃/Ae
2|kc|2 + α̃/Ae

< 1.

Hence we find that µ̃γ̃ − 1 must be negative. Since s, |kc|2, µ̃C and a11 are
positive and m11 is negative, the above presented definitions of ρ1, ρ2 and ρ3

ensure that these are all positive.

With use of these constants, the modulation equation becomes

Aτ = −ρ1A+ ρ2k
2
cAχχ − ρ3h|A|2A.

At this point we can write this equation in a more standardized Ginzburg-
Landau form by rescaling χ, τ and A. To do this, we introduce τ̄ = C1τ , χ̄ =
C2χ and A = C3Ā. By choosing C1 = ρ1, C3 =

√
ρ3/ρ1 and C2 =

√
ρ2/ρ1

1
k2
c
.

Hence the modulation equation for this one-dimensional perturbation becomes
(suppressing the bars):

Aτ = −A+Aχχ − h|A|2A

The sign of h depends on the specific values for all parameters. In Appendix C
we inspect the Ginzburg-Landau in detail.
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Appendix B

Approximations for
bifurcation planes

In Section 3.2 we give approximations of the bifurcation lines and eigenvalue
curves, when we work with the µ-parameters (i.e. we use µ11 and µ21 as our
bifurcation parameters). The results in that section are not self-contained and
refer to a similar analysis, using η and γ as bifurcation parameters. In this
appendix we give the details of this study to which we refer in Section 3.2.

B.1 Approximation of bifurcation lines

Our first goal is to find approximations of the bifurcation lines. These lines, in
the parameter space, indicate when either the trace or the determinant changes
signs. In turn this tells us for what values of our parameters the uniform steady
state is linearly stable and when it is unstable. We first inspect when the trace
changes sign and then find out when the determinant changes sign.

B.1.1 On the trace

To have linear stability we need to have θ > θc. As we have seen before we have

θc = max
{

0,−η |η|4
}

. This means that θc = 0 when η ≥ 0 and θc = η2

4 when

η < 0.

We have assumed that θ is positive and of order O(ε). This means that when

we always have θ > 0. So, when η ≥ 0 the trace of M(~k) is negative for all
wavelengths.

When η < 0, however, the critical value θc increases to θc = η2

4 . Now, in order

to still have linear stability we need θ > θc = η2

4 , and we have a critical situation

when θ = θc = η2

4 . Since θ is of order O(ε) it is clear that this inequality can
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only be satisfied when θc is of order O(ε) as well. From this it is clear that η
need to be of order O(

√
ε).

More precisely, we can write θ = εt, where t > 0 and of order O(1). Then the
critical situation θ = θc is attained when η = −2

√
ε
√
t. So this means that the

trace is negative for all possible wavelengths when η > −2
√
ε
√
t and the trace is

positive for some range of wavelengths when η < −2
√
ε
√
t. When η = −2

√
ε
√
t

the trace is zero for the set of wavelengths with |~k|2 = −η
2 (and negative for all

others). This is the critical situation and therefore we define ηc := −2
√
ε
√
t.

B.1.2 On the determinant

For linear stability we need the determinant to be positive for all wavelengths
~k. This means that we need to have δ > δc. Per assumption we know that
δ > 0. Thus if δc = 0 this condition is trivially obeyed. Thus when (β, γ) lies
above (or on) the line A (see equation (3.11) and the red region in Figure 3.3)
the determinant is positive for all possible wavelengths.

The characterization in the other regions is not as clear. In this region the
critical value δc is positive and thus it is not immediately clear when the con-
dition δ > δc is obeyed. Since δ is of order O(ε) it is only possible for this
condition to hold, when δc is of order O(ε) as well. Recalling the value of δc in
this region, as stated in equation (3.13), we have

27δc =
(
−β +

√
β2 − 3γ

)(
β2 − 6γ − β

√
β2 − 3γ

)
. (B.1)

We have already seen that this expression is zero when (β, γ) ∈ A. So when

β ≥ 0 and γ = 0 or when β ≤ 0 and γ = β2

4 the critical value δc = 0. In the
neighbourhoud of this line (but below it!), we find parameter combinations such
that δc is positive and of order O(ε).

So we essentially have two different situations we need to deal with. First, we
have the case when β < 0 and γ ≈ β2/4. Secondly there is the case when β > 0
and γ ≈ 0. For both of these cases we assume that β is of order O(εµ), where µ ∈
R. We then investigate what this imposes on the order of γ −max

{
0,−β |β|4

}
.

Case β < 0

As stated before, when β < 0 we know that δc = 0 when γ = β2

4 . Now we

assume that β = εµb and that γ = β2

4 + ενg = ε2µ b2

4 + ενg, where b, g < 0 are of
order O(1). This corresponds to a parameter combination such that (β, γ) lies
close to A but still below it. The exponents µ and ν are at this point unknown
and must be chosen such that δc is of order ε. In this section we determine what
conditions this implies on the exponents µ and ν.

To do this we evaluate the expression for δc at the point (β, γ) and deter-
mine the leading order of this expression. The leading order must be of or-
der ε. To be more precise we assume that δc = εz where z > 0 is of order
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O(1). Now, the most difficult part in the expression for δc is the square root√
β2 − 3γ =

√
ε2µ b2

4 − 3ενg. With a Taylor approximation we can get rid of

this root. However, there are now three essentially different possibilities: (1)
2µ < ν, (2) 2µ > ν and (3) 2µ = ν. We inspect them one by one.

(1) In this case the leading order in the root is ε2µ. Hence we can approximate

the root with
√
ε2µ b2

4 − 3ενg = εµ |b|2 + 3εν−µ gb . Thus by substituting this

into equation (B.1) we obtain up to leading order

27δc = 27εz =

(
−εµb− εµ b

2
+ 3εν−µ

g

b

)
(
ε2µb2 − 3

2
ε2µb2 − 6ενg − εµb

(
εµ
−b
2

+ εν−µ3
g

b

))
=

(−3

2
εµb+ 3εν−µ

g

b

)
(−9ενg)

=
27

2
εµ+νgb− 27ε2ν−µ g

2

b

In this situation we have 2µ < ν and therefore µ < ν − µ. The leading
order of the right-hand side is thus εµ+ν . So our final equality becomes

εz = εµ+ν gb

2
.

In order for this to hold, we must have µ + ν = 1 and g = 2z
b . From the

first condition we also learn that this case - with 2µ < ν - can only happen
when µ < 1

3 and that ν = 1− µ in this case.

(2) When 2µ > ν the leading order of the root’s argument is O(εν). Hence
the root now must be approximated as√

ε2µ
b2

4
− 3ενg =

√
−3gεν/2 + ε2µ−ν/2 b2

4
√−3g

Therefore the leading order of our expression for δc changes. We now have
up to leading order

27δc = 27εz =

(
−εµb+ εν/2

√
−3g + ε2µ−ν/2 b2

8
√−3g

)
(
−ε2µ b

2

2
− 6ενg − εµ+ν/2b

√
−3g − ε3µ−ν/2 b2

8
√−3g

)
Because we are inspecting the case in which 2µ > ν, we know that we
have µ, 2µ− ν/2 > ν/2 and that µ+ ν/2, 3µ− ν/2 > ν. Therefore up to
leading order the equation becomes

27εz = −ε3ν/26g
√
−3g (B.2)

And this equality only holds when ν = 2
3 and g = −3(z/2)

2/3
. Because

2µ > ν this means that µ must satisfy µ > 1
3 .
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Table B.1 – Summary of the results in section B.1.2. We have inspected the

case when β = εµb and γ = β2

4
+ ενg, where b, g < 0 and of order O(1) and

determined when the expression for δc can be written as δc = εz with z > 0 of
order O(1).

exponent µ exponent ν explicit solution
µ < 1

3 ν = 1− µ g = 2z
b

µ = 1
3 ν = 2

3 existence is guaranteed

µ > 1
3 ν = 2

3 g = −3(z/2)
2
3

(3) Finally we inspect the case 2µ = ν. In this case the root cannot be

expanded and we must use
√
ε2µ b2

4 − 3ενg = εµ
√

b2

4 − 3g. Therefore

equation (B.1) becomes up to leading order

27δc = 27εz = ε3µ

(
−b+

√
b2

4
− 3g

)(
−1

2
b2 − 6g − b

√
b2/4− 3g

)
To ensure that the orders match up we need µ = 1

3 and therefore ν = 2
3

(note that the expression on the right-hand side never vanishes for b, g <
0). It is not easy to explicitly solve this equation. However, for given b
it is clear that the right-hand side becomes zero when g ↑ 0 and tends
to infinity when g → −∞. Therefore the intermediate value theorem
guarantees that a solution exists.

The results of this subsection are summarized in Table B.1. These results tell
us about the condition that are imposed on the parameters β and γ to ensure
that δc = εz (with z > 0 of order O(1)) in the case that β < 0.

Case β > 0

When β > 0 we know that the critical δc = 0 when γ = 0. Therefore we now
inspect the situation when β = εµb and γ = ενg with b > 0 and g < 0 and
both of order O(1). Again we want to determine the conditions for various
exponents ν that ensure that δc = εz with z > 0 of order O(1). As before
the three essentially different possibilities are (1) 2µ < ν, (2) 2µ > ν and (3)
2µ = ν. We inspect each of these.

(1) As before the leading order of the root’s argument is ε2µ. Therefore the
root can be approximated as√

β2 − 3γ =
√
ε2µb2 − 3ενg = εµb− 3

2
εν−µ

g

b

Therefore the expression for δc of equation (B.1) becomes up to leading
order:

27δc = 27εz =

(
−3

2
εν−µ

g

b

)(
ε2µb2 − 6ενg − ε2µb2 +

3

2
ενg

)
=

27

4
ε2ν−µ g

2

b

132



Table B.2 – Summary of the results in section B.1.2. We have inspected the
case when β = εµb and γ = ενg, where b > 0, g < 0 and of both parameters of
order O(1) and determined when the expression for δc can be written as δc = εz
with z > 0 of order O(1).

exponent µ exponent ν explicit solution

µ < 1
3 ν = 1

2 + µ
2 g = −2

√
bz

µ = 1
3 ν = 2

3 existence is guaranteed

µ > 1
3 ν = 2

3 g = −3(z/2)
2
3

Clearly for this equality to hold we need 2ν − µ = 1 and g = −2
√
bz

(since g needs to be negative). This leads to the condition that µ < 1
3 and

ν = 1
2 + µ

2 .

(2) Here the root can be approximated as

√
ε2µb2 − 3ενg = εν/2

√
−3g +

b2

2
√−3g

ε2µ−ν/2

Therefore we now find the following expression for δc up to leading orders

27δc = 27εz =

(
−εµb+

√
−3gεν/2 +

b2

2
√−3g

ε2µ−ν/2
)

(
ε2µb2 − 6ενg − εµ+ν/2

√
−3gb+

b3

2
√−3g

ε3µ−ν/2
)

=− 6
√

3g
√−gε3ν/2

So this leads to the conditions ν = 2
3 , µ > 1

3 and g = −3(z/2)
2
3 .

(3) In this case the root cannot be expanded. So we find the following expres-
sion for δc up to leading order

27δc = 27εz = ε3µ
(
−b+

√
b2 − 3g

)(
b2 − 6g − b

√
b2 − 3g

)
So to have the same orders of ε on both sides we need µ = 1

3 and therefore
ν = 2

3 (again note that the expression never vanishes, when γ < 0 and
b > 0). As before finding the exact solution is a horrible task, but we can
again see that there must be a solution, because - for a fixed b > 0 - we
know that the right-hand side tends to zero as g ↑ 0 and tends to infinity
when g → −∞. So by the intermediate value theorem we know that a
solution must exist.

The results of this subsection are summarized in Table B.2. These results tell
us about the condition we need to impose on the parameters β and γ to ensure
that δc = εz, where z > 0 of order O(1), in the case β > 0.

General β

In the previous two subsections we have inspected the cases β < 0 and β > 0.
So at this moment we have the information for all possible orders of β, except
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Table B.3 – Summary of the results on the determinant. We have inspected
all possibilities for the sign and the order of β = εµb and determined the corre-
sponding order of the difference between the point (β, γ) and the point on the
line A with the same β, which we have defined as ενg to ensure that δc = εz is of
order O(ε). Moreover, we have also tried to find the explicit solution. Also see
Figure B.1 for a sketch of the situation.

sgn β exponent µ exponent ν explicit solution
β < 0 µ < 1/3 ν = 1− µ g = 2z

b
β < 0 µ = 1/3 ν = 2/3 existence is guaranteed

β < 0 µ > 1/3 ν = 2/3 g = −3(z/2)
2
3

β = 0 - ν = 2/3 g = −3(z/2)
2
3

β > 0 µ > 1/3 ν = 2/3 g = −3(z/2)
2
3

β > 0 µ = 1/3 ν = 2/3 existence is guaranteed

β > 0 µ < 1/3 ν = (1 + µ)/2 g = −2
√
bz

for β = 0. In this case, however, equation (B.1) reduces to

27δc = 6
√

3(−γ)3/2

Hence if we set δc = εz with z > 0, we find the solution γ = 3(z/2)2/3ε2/3.

At this point we have inspected all the possible situations for β. We have
summarized our findings in Table B.3. In Figure B.1 we have sketched the
various possibilities in the (β, γ) plane.

As we have stated many times before, when δ > δc the determinant of the
matrix M(~k) is positive for all wavelengths ~k and when δ < δc this determinant

is negative for some range of wavelengths ~k. At the critical value δ = δc the
determinant is non-negative for all wavelengths and there are a few critical
wavelengths.

Since we have assumed that δ = εd where d > 0 is of order O(1). Hence only
when the parameters β and γ are such that δc is of order O(ε) can it ever happen
that we have a critical wavelength (due to the determinant). So this means that
only when (β, γ) is contained in the red region of Figure B.1 we can possible find
that the determinant is non-negative for all wavelengths and identically zero for
some critical wavelengths ~kc.

If we assume that δ = εd is fixed, and that we know the order and sign of β, we
can use Table B.3 to find what value for γ is critical (i.e. replace z with d in
this table). We’ll call this critical value γc. Now from the previous analysis it
is clear that the uniform steady state is stable when γ > γc and that there are
critical wavelengths when γ = γc.

In this case the critical wavelengths are those with |~kc|2 = 1
3

(
−β +

√
β2 − 3γ

)
.

We can apply the same order analysis on this expression to find the leading
order of |~kc|2. The results of this analysis are given in Table B.4.
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β

γ

O(ε
2
3 )O(ε

2
3 )

O(ε
1
3 ) O(ε

1
3 )

O(ε) O(ε)

O(
√
ε)

O(ε)

O(εµ) O(εµ)

O(ε
1+µ
2 )

O(ε1−µ)

Figure B.1 – Schematic illustration of the region in the (β, γ) plane where the
critical δc is of order O(ε). See also Table B.3. The blue lines denote orders of β,
the red one the orders of γ. The orange line in this illustration is the line where
δc = 0. In the region above the orange line δc = 0 and thus δ > δc is always
satisfied. Hence the determinant is positive for all wavelengths. In the region
below the purple line δc is larger than order O(ε) and hence δ < δc. Thus in
this region there is a range of wavelengths with positive eigenvalues and thus the
system cannot be linearly stable in this region.

Table B.4 – In this table we summarize the various possible critical values γc
and critical wavelengths ~kc, for given parameters δ = εd and β = εµb. Here

γc = max
{

0,−β |β|
4

}
+ ενgc (see Table B.3). This table only shows the leading

order of these critical values.

sgn β exponent µ γc (or gc) |~kc|2
β < 0 µ < 1/3 ενgc = 2d

b ε
1−µ |~kc|2 = − 1

2ε
µb

β < 0 µ = 1/3 existence guaranteed |~kc|2 = 1
3ε

1/3
(
−b+

√
b2/4− 3g

)
β < 0 µ > 1/3 ενgc = −3(d/2)2/3ε2/3 |~kc|2 = ε1/3

√
−g/3

β = 0 - γc = −3(d/2)2/3ε2/3 |~kc|2 = ε1/3
√
−g/3

β > 0 µ > 1/3 γc = −3(d/2)2/3ε2/3 |~kc|2 = ε1/3
√
−g/3

β > 0 µ = 1/3 existence guaranteed |~kc|2 = ε1/3
(
−b+

√
b2 − 3g

)
β > 0 µ < 1/3 γc = −2

√
bdε

1+µ
2 |~kc|2 = − 1

2ε
1−µ

2 g/b
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B.2 Bifurcation lines in the (η, γ)-plane

In the previous sections we have determined that the trace of the matrix M(~k) is

negative for all wavelengths ~k when η > ηc and that the determinant is positive
for all wavelengths when γ > γc, for given values of the parameters β, δ and
θ. We also saw that the order of γc depends on the order of β (see Table B.4).
From this we learn that there are bifurcations when γ = γc or when η = ηc. In
this section we further investigate the parameter space (η, γ).

Again, we assume that β = εµb, δ = εd and θ = εt. Furthermore we denote
γ = ενg and η = ετe, where the parameters b, d, t, g and e are of order O(1). In
section B.1.1 we have found that ηc = −2

√
ε
√
t and in section B.1.2 we saw that

the order and the sign of γc depends on the value of β = εµb. More precisely
we found

γc =


gε2µ with g > 0, when µ < 1/3 and b < 0;

gε2/3 with g < 0, when µ ≥ 1/3;

gε
1+µ

2 with g < 0, when µ < 1/3 and b > 0.

(B.3)

We want to study the stability of the system, for varying parameters γ and η.
With the previous insight it is now clear that there are essentially three different
forms of the (η, γ) parameter plane, depending on the sign and order of the
parameter β. We have sketched all three of these possibilities in Figure B.2.

So it is now clear that there are two bifurcation curves in the (η, γ) plane. The
bifurcations we are here encountering are those that make the stationary state
unstable. Thus the bifurcation occurs at the boundary of the green area (see
Figure B.2). The boundary on which γ = γc we’ll denote by Γd and the other
boundary, on which η = ηc, we’ll define as Γt. Thus we have

Γd = {(η, γc) : η = ηc; } (B.4a)

Γt = {(ηc, γ) : γ = γc.} (B.4b)

From our analysis it is clear that on Γd there is a band of critical wavelengths
with a specific absolute value (see Table B.4 for the precise conditions for these

wavelengths). For these wavelengths ~kc we know that the determinant of M(~k)
is zero, but the trace is negative (as long as η > ηc). Thus at these critical
wavelengths one eigenvalue is zero, while the other is negative. So in the neigh-
bourhoud of these critical wavelengths, the corresponding eigenvalues are real
as well.

On Γt, however, there is another band of critical wavelengths, with a (different)

absolute value (i.e. |~kc|2 =
√
ε
√
t). For these the trace of M(~k) is zero, while

the determinant is positive (as long as γ > γc). Hence at these critical values
both eigenvalues are purely imaginary. Moreover, at a neighbourhoud around
this band the corresponding eigenvalues are complex as well.

Finally, on Γt ∩ Γd = {(ηc, γc)} we normally find two bands of critical wave-
lengths. One with purely imaginary eigenvalues, and one band with one eigen-
value identically zero (coming from being on the half-line Γt or Γd respectively).
However, when the parameters β, θ and δ are chosen well, it could happen that
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η

γ

ηc

O(
√
ε)

γc
O(εµ)

(a) µ < 1/3 and b < 0.

η

γ

ηc

O(
√
ε)

γc

O(ε2/3)

(b) µ > 1/3.

η

γ

ηc

O(
√
ε)

γc
O(ε

1+µ
2 )

(c) µ < 1/3 and b > 0.

Figure B.2 – The possible forms of the (η, γ)-parameter plane, depending on
the sign and order of β = εµb. The blue line denotes the critical line where η = ηc
and hence there are some wavelengths ~k such that Tr M(~k) = 0. The red line
denotes the other critical line, where γ = γc. On this line there are wavelengths
~k such that detM(~k) = 0. The green area is the region of the (η, γ) plane where
the trace is negative and the determinant is positive for all wavelengths. Thus in
this region the uniform stationary point is stable.

these band coincide. Then at these critical wavelengths we’ll find that both
eigenvalues are identically zero and it is not clear what happens in the neigh-
bourhoud of these wavelengths.

B.3 Approximation of Eigenvalue curves

We would like to present all possible eigenvalue curves on the bifurcation curve
Γt∪Γd. However, in order to make these, we need to know for what combination
of parameters and wavelengths the eigenvalues become complex. We know that
the eigenvalues of the matrix M(~k) are

ω1,2 =
Tr M(~k)

2
± 1

2

√(
Tr M(~k)

)2

− 4 detM(~k).

Thus we know that the eigenvalues are complex when ∆ := TrM(~k)2−4 detM(~k)
is negative. In the next subsections we’ll delve into this matter and produce
eigenvalue curves for parameter combinations on the half-line Γd and Γt, by
inspecting the sign of ∆.

B.3.1 Eigenvalue curves on Γt

We’ll first inspect the possible eigenvaluecurves on Γt. On this half-line we have
η = ηc = −2

√
ε
√
t and the critical eigenvalues are |~kc|2 =

√
ε
√
t. Now, to study

when the eigenvalues become complex, we need to determine when ∆ < 0. We’ll
first expand the previously given expression for ∆ and we find that

∆ = |~k|8 + (2η − 4ε)|~k|6 +
(
η2 + 2εt− 4εβ

)
|~k|2 + (2εηt− 4εγ)|~k|2 + ε2

(
t2 − 4d

)
.
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From this expression it is already clear that ∆ > 0 when |~k| → ∞. Also when

|~k| ↓ 0 it is clear that the last term dominates. Hence ∆ ≈ ε2
(
t2 − 4d

)
when

|~k| ↓ 0. So when t2 − 4d < 0 we find ∆ < 0 for wavelengths with absolute value
close to zero. Thus the corresponding eigenvalues are complex when t2−4d < 0
for these wavelengths. Also, in the previous section we already observed that
there are wavelengths around the critical wavelength that correspond to complex
eigenvalues.

However, there can be other bands of wavelengths that correspond to complex
eigenvalues. To determine whether this happens, we must study the sign of ∆.
For this we again are going to find the dominant ε-term in the expression for ∆.
For this we introduce the notation η = ετe, β = εµb, γ = ενg and |~k|2 = ερ|~m|2
where e, b, g,m are of order O(1). Thus the expression for ∆ becomes:

∆ =ε4ρ|~m|8 + (2ετe− 4ε)ε3ρ|~m|6 +
(
ε2τe2 + 2εt− 4bεµ+1

)
ε2ρ|~m|4

+
(
2ετ+1et− 4εν+1g

)
ερ|~m|2 + ε2

(
t2 − 4d

)
(B.5)

Now, for values (η, γ) ∈ Γt we know that η = ηc. Hence τ = 1/2 and e < 0.
Thus the expression simplifies to

∆ =ε4ρ|~m|8 +
(

2ε1/2e− 4ε
)
ε3ρ|~m|6 +

(
εe2 + 2εt− 4bεµ+1

)
ε2ρ|~m|4

+
(

2ε3/2et− 4εν+1g
)
ερ|~m|2 + ε2

(
t2 − 4d

)
.

Since we are only interested in the leading orders, we can further simplify this
to the following expression, which only has the possible highest order terms

∆ =ε4ρ|~m|8 + 2eε3ρ+1/2|~m|6 +
(
ε(e2 + 2t)− 4εµ+1b

)
ε2ρ|~m|4

+
(

2ε3/2et− 4εν+1g
)
ερ|~m|2 + ε2

(
t2 − 4d

)
.

When the leading term of ∆ is negative, we know that ∆ is negative as well.
Hence we must investigate which terms can be negative and see when they
dominate. There are four terms that can be negative:

(1) The first possibility is the term 2eε3ρ+1/2|~m|6. This one is always negative.

(2) The second is the term
(
ε
(
e2 + 2t

)
− 4εµ+1b

)
ε2ρ|~m|4. This term is nega-

tive when b > 0 and µ < 0.

(3) The third term
(
2ε3/2et− 4εν+1g

)
ερ|~m|2 is negative when ν > 1/2 or

when g > 0.

(4) The last term, ε2(t2 − 4d) is negative when t2 − 4d < 0.

(Note that there are special cases, when orders are equal. We have purposely
neglected these as they only further complicate the notation. What happens in
these cases should be clear from the analysis of the other cases.)

We already saw that the fourth possibilities leads to complex eigenvalues around
wavelengths with |~k| = 0. For the other three possibilities we determine for
what values of ρ these terms are dominant. This immediately tells us what the
order is of the wavelengths that are complex due to this term. We inspect the
possibilities one by one.
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(1) This term is dominant when ε3ρ+1/2 is bigger than the other powers of ε.
This means that the following inequalities need to be satisfied:

3ρ+ 1/2 < 4ρ

3ρ+ 1/2 < 2ρ+ 1

3ρ+ 1/2 < 2ρ+ 1 + µ

3ρ+ 1/2 < ρ+ 3/2

3ρ+ 1/2 < ρ+ 1 + ν

3ρ+ 1/2 < 2

The first condition leads to ρ < 1/2, while the second leads to ρ > 1/2.
Hence we must conclude that this term never dominates.

(2) The second term dominates when the following inequalities are obeyed

2ρ+ µ+ 1 < 4ρ

2ρ+ µ+ 1 < 3ρ+ 1/2

2ρ+ µ+ 1 < ρ+ 3/2

2ρ+ µ+ 1 < ρ+ 1 + ν

2ρ+ µ+ 1 < 2

These conditions lead to the following condition on the exponent ρ:

max

{
µ+ 1

2
,

2µ+ 1

2

}
< ρ < min

{
1− 2µ

2
, ν − µ, 1− µ

2

}
Since the term is only negative when b > 0 and µ < 0, we know that
µ + 1 > 2µ + 1 for the possible exponents µ. Moreover, 1 − µ < 1 − 2µ.
Thus this condition simplifies to

µ+ 1

2
< ρ < min

{
ν − µ, 1− µ

2

}
We can easily verify that there are always exponents ρ that satisfy this
inequality, when ν > 3µ−1

2 . So this term does indeed lead to complex
eigenvalues.

(3) The term
(
2ε3/2et− 4εν+1g

)
ερ|~m|2 is dominant when the the exponents

satisfy the following inequalities:

ρ+ 1 + min{1/2, ν} < 4ρ

ρ+ 1 + min{1/2, ν} < 3ρ+ 1/2

ρ+ 1 + min{1/2, ν} < 2ρ+ 1 + min{0, µ}
ρ+ 1 + min{1/2, ν} < 2

Now, in determining what terms could be negative, we observed that this
term is negative when ν > 1/2 or when ν < 1/2 and g > 0. In the
case that ν > 1/2 we know that min{1/2, ν} = 1/2. Hence we find the
following condition on ρ:

max{1/2, 1/2− ν} < ρ < 1/2
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So it is clear that there are no exponents ρ that satisfy this.

On the other hand, when ν < 1/2 we have min{1/2, ν} = ν. Thus in this
case we have the following condition for ρ:

max

{
1 + ν

3
,

1 + 2ν

4
, ν, ν − µ

}
< ρ < 1− ν

Solving this, we obtain that there are exponents ρ that satisfy this relation
when ν < min

{
1+µ

2 , 1
2

}
.

Therefore we can conclude that this term leads to complex eigenvalues
when ν < min

{
1+µ

2 , 1
2

}
and g > 0. For these we find O(~k) = O(ερ/2) with

ρ such that

max

{
1 + ν

3
, ν − µ

}
< ρ < 1− ν

(4) The last term, ε2(t2−4d), dominates when the following inequalities hold

2 < 4ρ

2 < 3ρ+
1

2
2 < 2ρ+ 1

2 < 2ρ+ 1 + µ

2ρ+
3

2
2ρ+ 1 + ν

These inequalities are all obeyed when ρ > max
{

1
2 ,

1−µ
2 , 1− ν

}
.

Now, with this we have identified four possible regions of wavelengths for which
the eigenvalues are complex:

(i) Around ρ = 1/2, which is the order of the critical wavelengths |~kc|;
(ii) The region ρ ∈

(
µ+1

2 < ρ < min
{
ν − µ, 1−µ

2

})
which only exists when

b > 0, µ < 0 and ν > 3µ−1
2 ;

(iii) The region ρ ∈
(
max

{
1+ν

3 , ν − µ
}
< ρ < 1− ν

)
, which only exists when

g > 0 and ν < max
{

1
2 ,

1+µ
2

}
.

(iv) The region ρ ∈
(
max

{
1
2 ,

1−µ
2 , 1− ν

}
,∞
)
, which exists when t2 − 4d < 0.

With this regions identified it is possible to make plots of the possible eigenvalue
curves. However, we first must acknowledge that it is possible for the regions to
overlap. For instance the second region is always include ρ = 1/2 and therefore
overlap with the first region. Also, clearly the fourth region overlaps the first
region when µ > 0 and ν > 0.

For the second region, we can observe that it also contains ρ = 1/2 when
ν /∈

(
2µ+1

2 , 1+µ
2

)
with µ < 0. Since µ < 0 and b > 0 we however know that

O(γc) = O(ε
1+µ

2 ). As we are studying the behaviour on the line Γt we know
that γ ≥ γc. Hence when ν ∈

(
2µ+1

2 , 1+µ
2

)
with µ < 0, we know that g > 0.

This means that in this case also the third region is present. So if the second
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k

Re(ω)

(a) Eigenvalue curve for
parameter choice such
that t2 − 4d > 0.

k

Re(ω)

(b) Eigenvalue curve for
parameter choice such
that t2 − 4d < 0.

k

Re(ω)

(c) Eigenvalue curve for
parameter choice such
that t2 − 4d < 0 and
such that the regions
containing ~kc and ~k = 0
are separated by a region
with real eigenvalues.

Figure B.3 – Sketch of the possible eigenvalue curves on Γt. These plots are
made with Matlab, where we have used b = −1, µ = 0, g = 1, ν = 0, d = 1,
η = ηc = 2

√
ε
√
t and t = 6 (a) or t = 1(b). For figure (c) we have used

b = 1, d = 1, t = 19/10, µ = −1, g = −1, ν = −1/10 and η = ηc. For the plotting
we have set ε = 1

100
. In both figures we can clearly see the critical wavelengths

for which |~kc|2 =
√
ε
√
t. In Figure (a) it looks as though the wavelengths ~k = 0

becomes critical when the parameters would be chosen slightly different. This
does not happen though, as we have assumed O(θ) = O(δ) = O(ε) and thus the

eigenvalue in ~k = 0 is always negative (and of order O(ε)).

region does not overlap with any other region, this means that the second region
only contains big wavelengths (i.e. ρ > max

{
1+µ

3 , ν − µ
}

).

Since we are mainly interested in the behaviour for which the eigenvalues are
close to zero, we can focus only on the behaviour of the eigenvalue curve for
small wavelengths. Hence by the above reasoning we always find that there’s
always a region of complex eigenvalues that contains ρ = 1

2 . This region may

also include ~k = 0, but it need not. It can also happen that there are two region
with complex eigenvalues, one containing ρ = 1

2 and one containing ~k = 0,
separated by a small region with real eigenvalues.1. This can, however, only
happen in very specific cases, when the fourth region does not coincide with
any of the others.

The possibilities for the eigenvalue curves on Γt are plotted in Figure B.3.

B.3.2 Eigenvalue curves on Γd

To find the eigenvalue curves on the bifurcation line Γd we need to apply a similar
analysis as before. This time we need to fix γ = γc. But, the sign and order of
γc depends on the sign and order of β (see equation (B.3)). So we need to do

1Note that we have neglected what happens when ρ is very small, since we are mainly
interested in the behaviour for small wavelengths, with small eigenvalues.
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the whole analysis for all these three possible scenarios. Luckily the analysis for
most of the cases is similar and therefore we analyze them simultaneously. Again
we determine the form of ∆. By substitution of γc = ενgc in equation (B.5), we
now have

∆ =ε4ρ|~m|8 + (2ετe− 4ε)ε3ρ|~m|6 +
(
ε2τe2 + 2εt− 4bεµ+1

)
ε2ρ|~m|4

+
(
2ετ+1et− 4εν+1gc

)
ερ|~m|2 + ε2

(
t2 − 4d

)
.

Again we must identify which terms can become negative and under what con-
ditions this happens. We now find the following possibilities:

(1) The term 2ετ − 4ε < 0 when τ > 1 or when τ < 1 and e < 0. Since
η ≥ ηc = −2

√
ε
√
t on Γd the condition e < 0 implies that τ > 1/2.

Thus this term is negative when either of the following set of conditions
is satisfied:

(a) τ > 1;

(b) e < 0 and τ ∈ (1/2, 1).

(2) The term 2ε2τe2 + 2εt− 4bεµ+1 < 0 when b > 0 and µ < min{2τ − 1, 0}.
(3) The term 2ετ+1et− 4εν+1g < 0 in either of the following two cases

(a) e < 0 and τ < ν;

(b) g > 0 and τ > ν.

(4) The last term, ε2
(
t2 − 4d

)
, is negative when t2 − 4d < 0.

As before we need to determine when these terms are dominating the expression
for ∆. For all of the previously mentioned cases we are going to inspect when
they dominates.

(1a) When τ > 1, we know ετ < ε. Hence for the term to dominate the
following inequalities need to be satisfied

3ρ+ 1 < 4ρ, 2ρ+ 2τ, 2ρ+ 1, 2ρ+ µ+ 1, ρ+ 1 + τ, ρ+ 1 + ν, 2

We can rewrite these condition to the following more straight-forward
condition

1 < ρ < 2τ, 1, 0, µ, τ/2, ν/2, 1/3

Clearly there are no ρ that satisfy this, as 1 < 0 is false. So this situation
will not lead to complex eigenvalues.

(1b) In this situation we assume that e < 0 and τ ∈ (1/2, 1). Now we have
τ < 1 and therefore min{1, τ} = τ . Now the term is dominant when the
following inequalities hold

3ρ+ τ < 4ρ, 3ρ+ min{2τ, 1, µ+ 1}, ρ+ 1 + min{τ, ν}, 2

Since τ > 1/2 we have min{2τ, 1} = 1. Thus this condition reduces to

3ρ+ τ < 4ρ, 2ρ+ 1 + min{0, µ}, ρ+ 1 + min{τ, ν}, 2
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And this condition can then again be written in the following way

τ < ρ < 1− τ, 1− τ + µ, 1/2,
1 + ν − τ

2
,

2− τ
3

But this condition can not be satisfied as well, since τ > 1
2 in this particular

case. Hence we see that the term (1) cannot be dominant and therefore
won’t lead to complex eigenvalues.

(2) We now inspect term (2). For this, we assume that b > 0 and that
µ < min{2τ − 1, 0}. This term is dominating when

2ρ+ µ+ 1 < 4ρ, 3ρ+ 1, 3ρ+ τ, ρ+ 1 + τ, ρ+ 1 + ν, 2

This corresponds to the following condition on ρ:

µ,
µ+ 1

2
, µ+ 1− τ < ρ < ν − µ, τ − µ, 1− µ

2

Now we observe that µ+1
2 > µ, µ + 1 − τ when µ < 1, 2τ − 1. As we

have assumed that µ < min{2τ − 1, 0} this is always the case. Also
1−µ

2 < τ − µ when µ < 2τ − 1. Moreover, since b > 0 and µ < 0 we

know that O(γc) = O
(
ε

1+µ
2

)
Hence ν = 1+µ

2 . Thus this condition finally

reduces to
1 + µ

2
< ρ <

1− µ
2

It is possible to find values for the exponent ρ that satisfy this condition
when µ < 0. Since per assumption we have µ < min{2τ−1, 0} in this case,
we find that there indeed is a region in which there are complex eigenvalues
when these conditions are obeyed (i.e. b > 0 and µ < min{2τ − 1, 0}).

(3a) For this case we assume that e < 0 and τ < ν. Since e < 0 implies that
τ > 1

2 we essentially have the condition ν > τ > 1
2 . Now, this term is

dominant when the following inequalities are obeyed

ρ+ τ + 1 < 4ρ, 3ρ+ τ, 3ρ+ 1, 2ρ+ 1, 2ρ+ 1 + µ, 2

This corresponds to the following conditions on the exponent ρ:

τ + 1

3
,

1

2
,
τ

2
, τ, τ − µ < ρ < 1− τ

Since τ < 1 − τ is only possible when τ < 1/2 we see that there are no
exponents ρ that can satisfy all these conditions, because we already have
assumed that τ > 1/2. So this term, with these conditions, does not lead
to complex eigenvalues.

(3b) For this case we assume that g > 0 and τ > ν. Since g > 0 implies that
γc > 0 we know that b < 0, µ < 1/3 and ν = 2µ. Now, this term is
dominant when

ρ+ ν + 1 < 4ρ, 3ρ+ τ, 3ρ+ 1, 2ρ+ 2τ, 2ρ+ 1, 2ρ+ 1 + µ, 2

So this corresponds to exponents ρ that obey the following set of inequal-
ities:

2µ+ 1

3
,

2µ+ 1− τ
2

, µ, 2µ+ 1− 2τ, 2µ < ρ < 1− 2µ

143



We can easily verify that all these inequalities can be obeyed when we have
µ < 1

4 ,
τ
2 ,

1+τ
6 . Thus we see that this region contains complex eigenvalues

when µ = ν
2 <

1+τ
6 , τ2 ,

1
4 (and of course g > 0, b < 0).

(4) Finally, the last term dominates when

2 < 4ρ, 3ρ+ τ, 3ρ+ 1, 2ρ+ 2τ, 2ρ+ 1, 2ρ+ 1 + µ, ρ+ τ + 1, ρ+ ν + 1

Now these condition lead to the following set of inequalities for ρ:

ρ > max

{
1

2
,

2− τ
3

,
1

3
, 1− τ, 1− µ

2
, 1− ν

}
We observe that 1

2 >
2−τ

3 when τ > 1
2 and 1− τ > 2−τ

3 when τ < 1
2 . Thus

we can simplify this set of inequalities to

ρ > max

{
1

2
, 1− τ, 1− ν, 1− µ

2

}
So at this point we have identified the following possible regions for the exponent
ρ in which the eigenvalues are complex under the right set of conditions.

(I) The set ρ ∈
(

1+µ
2 , 1−µ

2

)
under the conditions b > 0 and µ < min{2τ−1, 0};

(II) The set

ρ ∈
(

max

{
2µ+ 1

3
,

2µ+ 1− τ
2

, µ, 2µ+ 1− 2τ, 2µ

}
, 1− 2µ

)
under the conditions µ = ν

2 <
1+τ

6 , τ2 ,
1
4 , g > 0 and b < 02;

(III) The set

ρ ∈
(

max

{
1

2
, 1− τ, 1− ν, 1− µ

2

}
,∞
)

when t2 − 4d < 0.

Clearly not all regions always exist simultaneously. Since region (I) requires
b > 0 and the second b < 0 we see that these two never coexist. It could
however happen that regions (I) and (II) exists simultaneously. In this case
we need t2 − 4d < 0, b > 0 and µ < {2τ − 1, 0}. As µ < 1

3 and b > 0 this

corresponds to the case in which O(|~kc|2) = O(ε
1−µ

2 ). Since detM(~k) = 0, we
know that there are no complex eigenvalues in the neighbourhood of the critical
wavelength. Moreover, we observe that in region (I) we have ρ < 1−µ

2 and in

region (III) we have ρ > 1−µ
2 . Thus when regions (I) and (III) both exist, they

don’t overlap and there is a region with real eigenvalues between them.

It is also possible for region (II) and (III) to exist simultaneously. Now we have

O(|~kc|2) = O(εµ). Also we find that ρ > µ in region (II) and ρ > 1
2 > µ in

region (III). Moreover we can can see that 1 − µ ≥ 1
2 , 1 − τ, 1 − ν,

1−µ
2 in this

situation. Therefore the regions (II) and (III) must overlap when they both
exist.

So from this analysis, we know that there essentially are five different forms of
eigenvalue curves that are possible to occur. We have plotted these in Figure B.4.

2Note that the condition g > 0 is already implied by the conditions b < 0 and µ < 1
3

.
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k

Re(ω)

(a) Eigenvalue curve for
parameter choice such
that t2 − 4d > 0, b > 0
and µ < min{2τ − 1, 0}.
Note that the eigenvalues
become real again for
very large wavelengths,
but this isn’t included in
the plot.

k

Re(ω)

(b) Eigenvalue curve for
parameter choice such
that t2 − 4d < 0, b > 0
and µ < min{2τ − 1, 0}.
Note that the eigenvalues
become real again for
very large wavelengths,
but this isn’t included in
the plot.

k

Re(ω)

(c) Eigenvalue curve
for parameter choice
such that t2 − 4d > 0
and not both b > 0 and
µ < min{2τ − 1, 0} and
such that region (II)
does not exist. Only one
eigenvalue is plotted here.

k

Re(ω)

(d) Eigenvalue curve
for parameter choice
such that t2 − 4d < 0
and not both b > 0 and
µ < min{2τ − 1, 0}.

k

Re(ω)

(e) Eigenvalue curve
for parameter choice
such that t2 − 4d > 0
and not both b > 0 and
µ < min{2τ − 1, 0} and
such that region (II) does
exist.

Figure B.4 – Sketch of the possible eigenvalue curves on Γd. These plots are
made with Matlab, where we have used b = 1, d = 1, e = 1, τ = 1, γ = γc and
µ = 1 and t = 6 (a), µ = 1 and t = 1 (b), µ = 0 and t = 6 (c) or µ = 0 and
t = 1 (d). For (e) we have used b = −1, d = 1, e = −2

√
6 + 1/10, τ = 1/2,

γ = γc, µ = 0 and t = 6. For the plotting we have set ε = 1
100

. In these figures
we can clearly see the critical wavelengths. Note that the scaling is chosen to
better show the behaviour for the wavelengths with small eigenvalues in each
case and therefore the scaling isn’t the same in all figures. Also note that due to
the numerical estimate ε = 1

100
, the eigenvalue at the critical wavelengths seem

to be non-negative. This is purely a numerical issue. Also note that in Figure
(c) only one eigenvalue is plotted and that in Figures (a) en (b) the eigenvalues
start to be real again for very large wavelengths, which are not included in these
plots.
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B.3.3 Eigenvalue curves on Γt ∩ Γd

Finally we must still investigate what happens when we choose our parameters
γ and η such that γ = γc and η = ηc. As argued before, we typically see
two bands of critical values, one coming from a zero trace and one from a zero
determinant. We denote by ~kt the critical wavelength for which the trace is zero
and we define ~kd as the critical wavelength for which the determinant is zero.
We know that O(|~kt|2) = O(ε1/2) and O(|~kd|2) = O(εσ) where σ can be read
from Table B.4:

σ =


µ if µ < 1/3 and b < 0;
1
3 if µ ≥ 1

3 ;
1−µ

2 if µ < 1/3 and b > 0.

We can then determine which critical wavelength lies closer to zero by inspecting
the exponents. We see that σ > 1

2 only when µ < 0 and b > 0. In this case

|~kd| < |~kt|. In the other case, when µ > 0 or b < 0, we have |~kt| < |~kd|. We
can also have µ = 0 and then the wavelengths have the same order. When
this happens and the parameters are chosen well enough it could happen that
~kd = ~kt (i.e. this happens when bt = d).

To draw the possible eigenvalue curves we need to figure out which situations
lead to complex eigenvalues once again. Luckily, we can use the analysis we did
before. Since in our current case we have η = ηc and γ = γc we know that our
analysis of Γt and Γd mus both hold simultaneously.

On Γt we could have two distinct regions for the exponent ρ in which the eigen-
values are complex:

(A) A region that includes ρ = 1
2 ;

(B) A region for which ρ < 1
2 that only exists when b > 0, µ < 0 and when

ν ∈
(

2µ+1
2 , 1+µ

2

)
.

Since we want to know what happens on Γd∩Γt we know that γ = γc. Therefore
in region (B) we must have ν = 1+µ

2 . So the inequality for region (B) can never
be satisfied and therefore region (B) cannot occur on Γt ∩ Γd.

On the other bifurcation line, Γd, we have found the following regions with
complex eigenvalues:

(I) A region for which ρ < σ, which only exists when we have b > 0 and
µ < min{2τ − 1, 0}.

(II) A region for which ρ > σ, which only exists when b < 0 and µ < 1+τ
6 , τ2 ,

1
4 ;

(III) A region that includes ρ = 0, which only exists when t2 − 4d < 0;

Here region (II) and (III) overlap when they both exist. We also note that
region (I) and (II) both should contain the exponent ρ = 1/2 when they exist3.
Thus these regions overlap with region (A).

Hence we know that there can only be complex eigenvalues in the neighbourhood
of ~kt and near ~k = 0 (when t2 − 4d < 0). So there are six different eigenvalue
curves possible. We have plotted these in Figure B.5.

3To see this we must remember that on Γt ∩ Γd we have τ = 1
2
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Re(ω)

(a) Eigenvalue curve for parameter

choice such that |~kd| < |~kt| and t2 −
4d < 0.

k

Re(ω)

(b) Eigenvalue curve for parameter

choice such that |~kd| < |~kt| and t2 −
4d > 0.

k

Re(ω)

(c) Eigenvalue curve for parameter

choice such that |~kd| > |~kt| and t2 −
4d < 0.

k

Re(ω)

(d) Eigenvalue curve for parameter

choice such that |~kd| > |~kt| and t2 −
4d > 0.

k

Re(ω)

(e) Eigenvalue curve for parameter

choice such that |~kd| = |~kt| and t2 −
4d < 0.

k

Re(ω)

(f) Eigenvalue curve for parameter

choice such that |~kd| = |~kt| and t2 −
4d > 0.

Figure B.5 – Plot of the possible eigenvalue curves on Γt ∩ Γd. These plots are
made with Matlab. We have used used b = 1, d = 1, µ = 1/4, γ = γc, η = ηc for
(a) and (b), where t = 39/20 (a) or t = 41/20 (b). For (c) and (d) we have used
b = −1, d = 1, µ = 0, γ = γc, η = ηc and t = 39/40 (c) or t = 83/40 (d). Finally
for (e) and (f) we have used b = 1, µ = 0, γ = γc, η = ηc, t = d/b and d = 6 (e) or
d = 1 (f). We have used ε = 1

100
. Note that due to this numerical estimate, the

eigenvalue at the critical wavelength may appear as non-zero in these plots.
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B.3.4 Bifurcation of the eigenvalue curves

In the previous section we have investigated the possibilities of the eigenvalue
curves on the bifurcation lines Γt and Γd for most of the possible parameter
combinations4. In this section we use this characterization to visualize the
change of the eigenvalue curves along the bifurcation lines Γt and Γd.

Because we ignored the special cases in the analysis in last section, the bifur-
cation of the eigenvalue curves is only clear when β = εµb > 0 and µ < 0 or
when β = εµb < 0 and µ < 1

4 . The other possible parameter choices cannot be
formally characterized with our current analysis, as we need to carefully inspect
all neglected special cases for this. However, the behaviour for these choices is
similar to the behaviour in the second case we are going to inspect.

The rest of this section is dedicated to the aforementioned specific parameter
choices:

1. β = εµb > 0 with µ < 0;

2. β = εµb < 0 with µ < 1
4 .

For both of these cases we inspect what happens when t2 − 4d < 0 and when
t2 − 4d > 0.

β > 0 and µ < 0

For this choice of the parameter β we have γc < 0 and of order O
(
ε

1+µ
2

)
. So we

know that the (η, γ) parameter-plane is as in Figure B.2c. Now there are two
different possible bifurcations of the eigenvalue curves, depending on the sign of
t2 − 4d.

The bifurcation of the eigenvalue curve in case t2−4d < 0 is drawn in Figure B.6
and for t2−4d > 0 in Figure B.7. These figures show how different wavelengths
can be critical depending on the choice of the parameters η and γ.

β < 0 and µ < 1
4

For this choice γc > 0 and the (η, γ) parameter-plane is as in Figure B.2a.
Again we need to dinstinguish between the cases t2 − 4d < 0 and t2 − 4d > 0.
In Figure B.8 we have illustrated the possibility t2−4d < 0, while in Figure B.9
we have plotted the eigenvalue curves when t2 − 4d > 0.

4Note that we have deliberately ignored the special cases in our analysis.
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(a) Eigenvalue curve on
Γd when η � 1.

k

Re(ω)

(b) Eigenvalue curve on
Γd when |η| � 1.

k

Re(ω)

(c) Eigenvalue curve on
Γd ∩ Γt.

k

Re(ω)

(d) Eigenvalue curve on
Γt when |γ| � 1.

k

Re(ω)

(e) Eigenvalue curve on
Γt when γ � 1.

Figure B.6 – The various possible eigenvalue curves on the bifurcation lines Γt
and Γd when β > 0 and µ < 0 and t2 − 4d < 0.
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Re(ω)

(a) Eigenvalue curve on Γd when η �
1. Note that only one eigenvalue is
plotted here.

k

Re(ω)

(b) Eigenvalue curve on Γd when |η| �
1.

k

Re(ω)

(c) Eigenvalue curve on Γd ∩ Γt.

k

Re(ω)

(d) Eigenvalue curve on Γt.

Figure B.7 – The various possible eigenvalue curves on the bifurcation lines Γt
and Γd when β > 0 and µ < 0 and t2 − 4d > 0.
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(a) Eigenvalue curve on Γd when η �
1.

k

Re(ω)

(b) Eigenvalue curve on Γd when |η| �
1.

k

Re(ω)

(c) Eigenvalue curve on Γd ∩ Γt.

k

Re(ω)

(d) Eigenvalue curve on Γt.

Figure B.8 – The various possible eigenvalue curves on the bifurcation lines Γt
and Γd when β < 0 and µ < 1

4
and t2 − 4d < 0.
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Re(ω)

(a) Eigenvalue curve on Γd when η �
1. Note that only one eigenvalue is
plotted here.

k

Re(ω)

(b) Eigenvalue curve on Γd when |η| �
1.

k

Re(ω)

(c) Eigenvalue curve on Γd ∩ Γt.

k

Re(ω)

(d) Eigenvalue curve on Γt.

Figure B.9 – The various possible eigenvalue curves on the bifurcation lines Γt
and Γd when β < 0 and µ < 1

4
and t2 − 4d > 0.
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Appendix C

Study of the Real
Ginzburg-Landau Equation

In many cases, including our model for the mussel-algae interaction, the stan-
dard weakly non-linear stability analysis results in the real Ginzburg-Landau
equation to describe the dynamics of the amplitude A:

Aτ = RA+ bAξξ + h|A|2A (C.1)

where τ and ξ are the slow time and spatial scales that were introduced in
the non-linear analysis. The parameters R, b and h are determined by the
parameters of the original problem. In the normal standard Real Ginzburg-
Landau equation we have R, b > 0 and h < 0.

In the derivation of the Ginzburg-Landau equation we have made the following
Ansatz for the solution of the original partial differential equation:

m(x, t) = me +A(ξ, τ)eikcx

Here the wavelength kc is the critical wavelength (i.e. the wavelength such
that one of the eigenvalues is zero and the other is non-positive) and me is
the relevant uniform stationary state of the original problem. So when we
know the (complex) function A, we also know the behaviour of the original
partial differential equation for parameter combinations close to the critical
combination (that led to the existence of a critical wavelength kc).

Therefe in this section we study the real Ginzburg-Landau equation. We focus
on the (possible) stationary solutions to this equation and with their stability.
From this we can determine what kind of behaviour is possible for A when τ is
large.

The description in equation (C.1) is not the usual formulation of the Ginzburg-
Landau equation. To write it in its normal form we have to introduce the scaling
τ ′ = |R|τ, ξ =

√
|R|/|b|ξ′, A =

√
|R|/|h|A′, which preserves the flow of time.

Then the expression can be rewritten as

A′τ ′ = sgn(R)A′ + sgn(b)A′ξ′ξ′ + sgn(h)|A′|2A′.
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We can also use the scaling τ ′′ = sgn(R)τ ′ now to find the expression

A′τ ′′ = A′ + sgn(Rb)A′ξ′ξ′ + sgn(Rh)|A′|2A′.

When we do this last scaling we should note that we have reversed time when
R < 0. That is, when R < 0 we have possibly changed the stability of the found
stationary solutions.

During this chapter we work with the following equation, in which we have
suppressed the apostrophes

Aτ = A+ bAξξ + h|A|2A.

Here b, h ∈ {1,−1} depending on the signs of the original b, h and R as argued
before. When we speak of stability during this chapter we mean the stability
for the system with R > 0.

C.1 Reformulation in polar coordinates

The amplitude A in the Ginzburg-Landau equation is complex. Moreover the
partial differential equation is phase invariant: if A is a solution to the equation
then so is Aeiθ for some fixed θ ∈ [0, 2π). Therefore it is logical to write
A(τ, ξ) = ρ(τ, ξ)eiψ(τ,ξ) where ρ and ψ are now real-valued functions. With this
transformation we can rewrite the partial differential equation as the following
system {

ρτ = ρ+ bρξξ − bρψ2
ξ + hρ3

ρψτ = 2bρξψξ + ρψξξ.

Our first goal is to find the stationary solutions of this system. Therefore we
seek ρ(ξ, τ) = ρ(ξ) and ψ(ξ, τ) = 0 and we can set the time derivatives equal to
zero. Hence stationary solutions must satisfy{

0 = ρ+ bρξξ − bρψ2
ξ + hρ3

0 = 2bρξψξ + bρψξξ.
(C.2)

We can multiply the second equation with ρ
b and integrate it once to obtain a

conserved quantity. The first equation can also be integrated: this can be seen
when we multiply it by 2ρξ and note that we can use the second equation to
rewrite it. Hence we can find the following conserved quantities:

Ω := ρ2ψξ

K := ρ2 +
h

4
ρ4 + bρ2

ξ + b
Ω

ρ2

Therefore we know that ψξ = Ω
ρ2 . Substitution in equation (C.2) then gives the

following ordinary differential equation for ρ:

0 = ρ+ hρ3 + bρξξ − b
Ω2

ρ3
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ρ

Re(Ω)

Im(Ω)

(a) b < 0, h > 0

ρ

Re(Ω)

Im(Ω)

(b) b < 0, h < 0

ρ

Re(Ω)

Im(Ω)

(c) b > 0, h > 0

ρ

Re(Ω)

Im(Ω)

(d) b > 0, h < 0

Figure C.1 – Sketches of the functions Ω = ±ρ2
√

1+hρ2

b
for the possible different

signs of h and b. In all these figures the red line denotes the real part of Ω, while
the green line denotes the imaginary part.

We want to write this as a system of first order ordinary differential equations.
Therefore we introduce v := ρξ. The resulting system then becomes{

ρξ = v

vξ = Ω2

ρ3 − 1
bρ− h

b ρ
3

(C.3)

The fixed points of this system must satisfy ρξ = 0 and vξ = 0. This means

that we need to have v = 0 and Ω2

ρ3 − 1
bρ− h

b ρ
3 = 0. Hence we need to have

Ω = ±ρ2

√
1 + hρ2

b
.

The amount of solutions to this expression depends on the signs of h and b. For
instance, if h > 0 and b < 0 we have only a solution when Ω = 0 and ρ = 0.
All these possibilities are sketched in Figure C.1. In the next sections we study
these possibilities one by one.

All the expressions involving Ω are symmetric under the reflection Ω → −Ω.
Therefore it is sufficient to study only the behaviour for Ω positive. Now, we
inspect what happens for Ω > 0 fixed (the degenerate case when Ω = 0 is
considered with later on).

From the sketches in Figure C.1 we can see that we have 0, 1 or 2 fixed points
with ρ > 0, depending on the value of Ω and the signs of h and b. When we have
a fixed points, we want to study its character. To do so, we need to linearize
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the system of equation (C.3). The linearized system (around the fixed point
(ρ∗, 0)) can be computed to be

d

dξ

(
ρ
v

)
=

(
0 1

−3Ω2

ρ4
∗
− 1

b − 3hb ρ
2
∗ 0

)(
ρ
v

)
From this we can easily compute the eigenvalues of the fixed point. When we

recall that Ω = ±ρ2
∗

√
1+hρ2

∗
b for the fixed point we can reformulate it and obtain

the eigenvalues as

λ± = ±
√
−3

Ω2

ρ4∗
− 1

b
− 3

h

b
ρ2∗

= ±
√

2

√
−2

b
− 3h

b
ρ2∗ (C.4)

C.2 Phase planes

In the last section we have derived some generally usable equation that will
characterize the system of equation (C.3). In this chapter we use these expres-
sions in order to find the phase planes of this system, for all possible values of
Ω > 0, b ∈ {1,−1} and h ∈ {1,−1}.

b < 0, h > 0

When b < 0 and h > 0 and we choose Ω > 0 we can see in Figure C.1 that there
are no fixed points in the system. Moreover, the system can now be written as{

ρξ = v

vξ = Ω2

ρ3 + ρ+ ρ3

Therefore we see that ρξ > 0 when v > 0 and ρξ < 0 when v < 0 and that vξ > 0
for all ρ > 0. The phase plane of this situation is given in Figure C.2a. We
see that solutions for ρ are unbounded. This would mean that the amplitude
A is unbounded, which violates the assumption that the perturbation is small.
Hence when b < 0 and h > 0 the Ginzburg-Landau equation is not be the right
modulation equation for the problem.

b < 0, h < 0

From Figure C.1 we see that there is always one fixed point when Ω > 0.
Moreover, we can determine that ρ∗ > 1 for the fixed point. Now the eigenvalues
of the fixed point can be computed with equation (C.4) and we obtain λ± =
±
√

2
√

2− 3ρ2∗. Since ρ∗ > 1 we find that the eigenvalues are both purely
imaginary and hence the fixed point is now a center.
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The phase plane of this situation is given in Figure C.2b. Since the system is
symmetric in {v = 0} we thus find infinitely many periodic orbits for ρ around
the fixed point. Note that all these solutions are bounded and hence do not
violate the smallness assumption on the amplitude A.

b > 0, h > 0

When b > 0 and h > 0 we can see in Figure C.1 that there is always one fixed
point when Ω > 0. Computation of the eigenvalues gives that, again, the fixed
point is a center. Hence the phase plane is similar to the previous case, where
b > 0, h < 0 (see Figure C.2b). This time, however, the value of ρ∗ can in fact
be smaller than 1, as can be seen in Figure C.1.

b > 0, h < 0

In this last situation, we have b = 1 and h = −1. It is clear from Figure C.1
that there is a value Ω∗ such that the system has two fixed points if Ω ∈ (0,Ω∗)
and no fixed points if Ω > Ω∗. The value for Ω∗ can be found by finding the
maximum of the function Ω = ρ2

√
1− ρ2. By a simple computation we find

that the maximum is attained when ρ =
√

2
3 and that Ω∗ =

√
4
27 .

Now, when Ω > Ω∗ the system has no fixed points. We are now essentially in
the same situation as we had when b < 0 and h > 0. That is, the phase plane
of Figure C.2a again describes the behaviour of the system. Again the solutions
are unbounded and therefore not good solutions.

On the other hand, when Ω ∈ (0,Ω∗) we now find two fixed points (ρ1, 0) and

(ρ2, 0) with ρ1 <
√

2
3 < ρ2. The eigenvalues in this situation are

λ± = ±
√

2
√
−2 + 3ρ2∗

Since ρ1 <
√

2
3 < ρ2 we find that the fixed point (ρ1, 0) is a center and (ρ2, 0)

is a saddle point. In this case we find - beside those unbounded solutions - two
fixed points, a homoclinic orbit and periodic orbits (enclosed in the homoclinic
orbit).

We haven’t talked about what happens when Ω = Ω∗. Here a saddle-note bifur-
cation occurs and the phase plane looks very similar to the one in Figure C.2a

with the addition that there is now one single fixed point at (
√

2
3 , 0) (which is

unstable). So this situation gives us only one additional bounded solution: the
fixed point itself.
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ρ

v

(a) Phase plane for b <
0, h > 0 and for b > 0, h <
0 when Ω > Ω∗.

ρ

v

(b) Phase plane for b <
0, h < 0 and for b > 0, h >
0.

ρ

v

(c) Phase plane for b >
0, h < 0 when Ω ∈
(0,Ω∗).

Figure C.2 – Sketches of the possible phase planes of equation (C.3) for different
values for b, h and Ω > 0. In all these figures the green dotes denote the fixed
points (if any) and the blue lines are sketches of a few orbits.

C.3 Stationary solutions of the Ginzburg-Landau
equation

In the previous section we have determined the stationary solutions of the system
of equation (C.3) for all possible situations. Here we have found several, different
bounded solutions for ρ:

� Saddle points: when b > 0, h < 0 and Ω ∈ (0,Ω∗];

� Centers: when b > 0, h < 0,Ω ∈ (0,Ω∗) and when sgn(b) = sgn(h);

� Periodic solutions: when b > 0, h < 0,Ω ∈ (0,Ω∗) and when sgn(b) =
sgn(h);

� Homoclinic connections: when b > 0, h < 0 and Ω ∈ (0,Ω∗).

In this section we determine how these kind of solutions for ρ gives us solutions
for the amplitude A in the Ginzburg-Landau equation we started with. We
inspect the different stationary solutions for ρ∗ one by one.

C.3.1 Uniform solutions ρ(ξ) = ρ∗

When we have a uniform stationary solution ρ(ξ) = ρ∗ we can use the conserved

quantity Ω = ρ2ψξ to conclude that ψξ = Ω
ρ2
∗
. Therefore ψ(ξ) = Ω

ρ2
∗
ξ =

√
1+hρ2

∗
b ξ

(note that because of the phase-invariance of the Ginzburg-Landau equation we
can forget about the integration constant).

So from this we find the following stationary solutions to the Ginzburg-Landau
equation:

A(ξ) = ρ∗ exp

(
i

Ω

ρ2∗
ξ

)
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ξ

A

Figure C.3 – Sketch of a possible quasi-periodic solution of the Ginzburg-Landau
equation. The blue line is the quasi-periodic solution, while the dotted, black lines
give the values of |A| and −|A|.

C.3.2 Periodic solutions

The second sort of stationary solutions are the period solutions ρ(ξ) for which
ρ(ξ + T ) = ρ(ξ) where T is the period of the solution. Since ψξ = Ω

ρ2 we find
that ψξ is also a periodic solution, with the same period. Therefore we find

ψ(ξ) =
∫ ξ

0
Ω

ρ(ξ′)2 dξ
′ where we have set ψ(0) = 0 because of the phase invariance

of the Ginzburg-Landau equation. The solution for the amplitude A now is

A(ξ) = ρ(ξ) exp

(
i

∫ ξ

0

Ω

ρ(ξ′)2
dξ′
)
.

It is not easy to find the exact form of this solution, since we need to deter-
mine the solution for ρ, and then integrate 1

ρ2 . We can however say something

qualitatively about this kind of solutions. It is clear that A(ξ) ∈ [−ρ(ξ), ρ(ξ)]
per construction. Moreover we know that ψξ attains a maximum when ρ at-
tains a minimum and vice versa. Hence ψ increases fastest/slowest when ρ is
smallest/biggest. We should also note that ψξ > 0 and therefore ψ is a mono-
tonically increasing function. In Figure C.3 we have sketched a possible form of
such quasi-periodic solutions of the Ginzburg-Landau equation.

C.3.3 Homoclinic connections

The last kind of solutions that we encoutered were homoclinic connections ρ(ξ)

where ρ(ξ) → ρ∗ >
√

2
3 when ξ → ±∞. Again, ψξ(ξ) = Ω

ρ(ξ)2 and therefore

ψξ(ξ) → Ω
ρ2
∗

when ξ → ±∞. Hence for very large |ξ| the solution for the

amplitude A is very similar to a periodic solution, as we found before.

When |ξ| is not big, we find the solution to be similar to the quasi-periodic solu-
tion, again bounded between −ρ(ξ) and ρ(ξ). A possible form of this amplitude
A is given in Figure C.4.
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ξ

A

Figure C.4 – Sketch of a possible solution of the Ginzburg-Landau equation,
coming from a homoclinic connection. The blue line is the solution, the dotted,
black lines give the values |A| and −|A|.

C.4 The situation when Ω = 0

This far we have neglected the special case when Ω = 0. When Ω = 0 we know
that 0 = Ω = ρ2ψξ. Therefore we find either ρ ≡ 0 or ψξ ≡ 0. When ρ = 0 we
have just found the amplitude A ≡ 0, which isn’t very useful. Thus we inspect
the other situation, where we have ψξ = 0 and hence ψ is constant.

In this situation the system of equation (C.3) reduces to the system{
ρξ = v

vξ = − 1
bρ− h

b ρ
3

(C.5)

The fixed points of this system are (0, 0) and (
√
−1/h, 0). This last one of

course only exists when h < 0.

Computation of the eigenvalues is straight-forward and we obtain that (0, 0) is
a saddle when b < 0 and a center when b > 0. The fixed point (−

√
−1/h, 0) is

a center when b < 0 and a saddle when b > 0.

The phase planes for the various signs for b and h are given in Figure C.5. We
again see the possibility of periodic solution. Moreover we see the possibility of
a homoclinic and a heteroclinic connection, either connection ρ = 0 with ρ = 0
(when b < 0, h < 0) or connecting ρ = ±

√
−1/h with ρ = ∓

√
−1/h (when

b > 0, h < 0). Sketches of these solutions are given in Figure C.6.
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ρ

v

(a) b < 0, h > 0

ρ

v

(b) b > 0, h > 0

ρ

v

(c) b < 0, h < 0

ρ

v

(d) b > 0, h < 0

Figure C.5 – Sketches of the phase planes of the system in equation (C.5) for
all possible signs of b and h. The green circles denote the fixed points and the
blue lines are some of the orbits.

ξ

A

(a) Homoclinic connection between
ρ = 0 and ρ = 0.

ξ

A

(b) Heteroclinic connection between
ρ = −

√
1/h and ρ =

√
1/h.

Figure C.6 – Sketches of possible homoclinic(a) and heteroclinic(b) orbits than
can occur in the Ginzburg-Landau system when Ω = 0, h < 0 and b > 0 (for the
heteroclinic orbits) and b < 0 (for the homoclinic orbits).

C.5 Stability of the stationary solutions

In order to really determine what is happening with the Ginzburg-Landau
equation it is necessary to determine the stability of the previously found sta-
tionary solutions. It’s easiest to do this linear stability analysis in the system
with polar coordinates. At this point we also write the complete equation again
(i.e. we do not assume R = 1). The system in polar coordinates then becomes{

ρτ = Rρ+ bρξξ − bρψ2
ξ + hρ3

ρψτ = 2bρξψξ + bρψξξ
(C.6)
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To determine the stability of the stationary solutions we look into perturbations
of the form (ρ, ψ) = (ρ0, ψ0) + δ(ρ̂, ψ̂). At the O(δ)-level the equation the
linearized system then becomesρ̂τ =

(
R+ b∂2

ξ − bψ2
0,ξ + 3hρ2

0

)
ρ̂− 2bρ0ψ0,ξ∂ξψ̂

ρ0ψ̂τ = (2bψ0,ξ∂ξ + bψ0,ξξ)ρ̂+
(

2bρ0,ξ∂ξ + bρ0∂
2
ξ

)
ψ̂

(C.7)

Then we want to derive a dispersion relation and therefore we set (ρ̂, ψ̂) =
eiqξ+ω(q)τ (r, s). Substitution then gives, after a little manipulation the following
system

ω

(
r
s

)
=

(
R− bq2 − bψ2

0,ξ + 3hρ2
0 −2bρ0ψ0,ξiq

2bψ0,ξ

ρ0
iq +

bψ0,ξξ

ρ0
2b
ρ0,ξ

ρ0
iq − bq2

)(
r
s

)
(C.8)

In the following sections we try to find the linear stability of the previously
found stationary states, for all possible cases, given by the signs of R, b and h.

C.5.1 Uniform states

The first stationary solutions that we want to investigate are those for which
A(ξ) ≡ A. We have seen before that there are three of those uniform solutions:
A = 0 and A = ±1 (which only exists when h < 0). In both of these cases the
Jacobian matrix can be reduces because ρ0,ξ ≡ 0 and ψ0,ξ ≡ 0. We thus obtain

J =

(
R− bq2 + 3hρ2

0 0
0 −q2

)
(C.9)

Hence one eigenvalue is λ1 = −q2, while the second is λ2 = R− bq2 + 3hρ2
0. For

stability both eigenvalues need to be negative.

When we inspect the uniform state A = 0, we see that λ2 = R − bq2 and
thus λ2 < 0 for all q when R < 0. For the uniform states A = ±1 we find
λ2 = R− ρ2

0 − bq2 (because h < 0 for these fixed points to exist). Hence λ2 < 0
for all wavelengths, regardless of the value of R.

We should note that λ1 = 0 when q = 0. This comes from the fact that the
Ginzburg-Landau equation is phase invariant. Hence in fact we find that there
is a circle of stationary points {eiπ} and this circle is an attracting set (note
that for A ≡ 0 this set is just a single point).

C.5.2 Periodic solutions of the form A(ξ) = a(θ)eiθξ

The second stationary solutions we have found were the periodic solutions of

the form A = ρ∗e
i Ω
ρ2∗
ξ
, which can also be written as A = a(θ)eiθξ for some θ ∈ R,

where a(θ) =
√

bθ2−R
h (for values of b, R, h, θ for which this makes sense). This

means that the Jacobian in this situation becomes
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J =

(
2[bθ2 −R]− bq2 −2ibθρ0q

2iq bθρ0
−bq2

)
The determinant and the trace of this matrix are easily verified to be

TrJ = 2
(
−bq2 + (bθ2 −R)

)
det J = q2

(
b2q2 + 2b(R− 3bθ2)

)
To find linear stability of these periodic orbits we need to have TrJ < 0 and
det J > 0 for all wavelengths q. So that means we need to have b > 0, bθ2−R < 0

and b(R− 3bθ2) > 0 simultaneously. We also need to have bθ2−R
h > 0 to ensure

that a(θ) ∈ R. So from this it is clear that these kind of periodic solutions are
only stable when R, b > 0, h < 0 and θ2 < R

3b . This result is called the Eckhaus
stability. Whenever these solutions exist for other values of (R, b, h) they are
unstable.

C.5.3 Periodic solutions of the form A(ξ) = ρ(ξ).

We have also found a set of periodic solutions of the form A(ξ) = ρ(ξ) for some
periodic function ρ(ξ). That means that we also implicitly have ψξ = 0. Hence
we can obtain the following linearized system, which can easily be derived from
equation (C.7): ρ̂τ =

(
R+ b∂2

ξ + 3hρ2
0

)
ρ̂

ρ0ψ̂τ =
(

2bρ0,ξ∂ξ + bρ0∂
2
ξ

)
ψ̂

Again we want to find the stability using our test functions (ρ̂, ψ̂) = (r, s)eiqξ+ωτ .
However, since ρ0 is not constant, our previous approach is not good. Instead
we need to take a formal Fourier transform of this equation. Here we denote the

Fourier transform of ρ2
0 by ρ̂2

0. Then we can see that the new system becomes{
ωr =

(
−bq2 +R+ 3hρ̂2

0(q)
)
r

ωs =
(
−3bq2

)
s

It is immediately clear that the eigenvalues are ω1(q) = −bq2 +R+ 3hρ̂2
0(q) and

ω2(q) = −3bq2. To have stability we need again need to have b > 0 so that

ω2 < 0 for all q 6= 0. To have ω1(q) < 0 we need to have −bq2 +R+3hρ̂2
0(q) < 0

for all wavelengths q.

Since ρ0 is a periodic function, ρ2
0 is a periodic function as well. Hence the

Fourier transform of ρ2
0 is zero almost everywhere. Hence for almost all q ω1 < 0

is guaranteed when R < 0. However, for special values of q (that are linked to
the period of the function ρ0) the condition becomes R + 3h < 0 and hence
we see we also need to have h < 0. Hence these kind of periodic functions are
stable when R < 0, b > 0 and h < 0.

However, in our derivation from previous sections, we have found that these kind
of periodic solution cannot exist when Rb < 0 and Rh > 0 (see Figure C.5).
Therefore these kind of periodic solutions never occur as stable stationary solu-
tions of the Ginzburg-Landau equation.
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C.5.4 The other stationary solutions

So far we have not yet discussed the stability of the quasi-periodic functions and
the homoclinic and heteroclinic connections (see Figure C.6). The computation
of the stability of these solutions is not straight-forward and one needs to solve
the linearized (inhomogenous) system completely. That is, we need to find all
possible eigenvalues and determine the sign of their real parts. As this is non-
trivial and is a complete study of its own, we have chosen to not pursue this at
this moment.
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