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Variables: 
 
            Water 
 
            Vegetation 

Parameters: 
 
        Rainfall 
 
        Mortality of plants 
 
        Small parameter 
 
        Height of terrain 

The extended-Klausmeier model 

𝑃1 𝑃2 𝑃3 
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Flat terrain (𝑯 𝒙 = 𝟎) 
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Flat terrain (𝑯 𝒙 = 𝟎) 
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The effect of adding terrain 

𝑯 𝒙 = 𝟎 

Generic 𝑯 𝒙  
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The effect of adding terrain 
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The effect of adding terrain 
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Movement of pulses 

𝑯 𝒙 = 𝟎 

Generic 𝑯 𝒙  

no movement 

downhill movement uphill movement 

𝑯 𝒙 = 𝑺𝒙 uphill movement [K. Siteur et al, 2014], [L. Sewalt & A. Doelman, 2017] 

conform [W.Chen & M. Ward, 2009] 
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Rigorous existence proofs 

Recall: 
 
 
 
 
 
 
 
 
 
AND 
 
A pulse has a movement speed 

Stationary situation 
(no movement) 
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Recall: 
 
 
 
 
 
 
 
 
 
AND 
 
A pulse has a movement speed 

Rigorous existence proof - (𝑯 𝒙 = 𝟎) 

Stationary situation 
(no movement) 
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Rigorous existence proof – Specific 𝑯 𝒙   

Recall: 
 
 
 
Bounded solution: 

Projected (𝑈 𝑥, 𝑈 )-plane 
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Rigorous existence proof – Specific 𝑯 𝒙   

Recall: 
 
 
 
Bounded solution: 
 
 
 
Stable/Unstable manifolds: 
 
UNSTABLE 
 
STABLE 

(𝑈 𝑥, 𝑈 )-plane for specific 𝑥 
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Rigorous existence proof – Generic 𝑯 𝒙   

Existence theorem 

If 𝐻(𝑥) is symmetric in 𝑥 = 0 and 𝛿 ≔ sup𝑥∈ℝ 𝐻𝑥 𝑥 2 +𝐻𝑥𝑥 𝑥 2 <
2−1

8
 

then  
a stationary symmetric one-pulse solution to the PDE exists 

(under the standard Gray-Scott magnitude assumptions on the parameters) 

Heart of the proof is the ‘rhoughness of exponential dichotomies’ 
  This gives bounds on stable and unstable manifolds and the bounded solution 
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Rigorous existence proof – Generic 𝑯 𝒙   

Recall: 
 
 
 
AND 
 
Bounds from exponential dichotomies 

Bounds via exponential dichotomies 
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Rigorous existence proof – Generic 𝑯 𝒙   

Recall: 
 
 
 
AND 
 
Bounds from exponential dichotomies 
 
AND 
 
𝐻(𝑥) is symmetric in 𝑥 = 0 

Using symmetry arguments 
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Stability of one-pulse solution 

Autonomous (𝐻𝑥 𝑥 ≡ 0) 
[A. Doelman, R.A. Gardner, T.J. Kaper, 1998]  

Non-Autonomous 
(𝛿 ≔ sup𝑥∈ℝ 𝐻𝑥 𝑥 2 + 𝐻𝑥𝑥 𝑥 2 < 𝛿𝑐) 
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Summary 

Existence stationary one-pulse solution 

• with explicit expressions 

• with rhoughness of exponential dichotomies 

 

Stability 

• big eigenvalues have negative real part 

• small eigenvalue can become unstable 

- Related to movement of the pulse 

- Both uphill and downhill movement possible 
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then  
a stationary symmetric one-pulse solution to the PDE exists 

(under the standard Gray-Scott magnitude assumptions on the parameters) 



Projected (𝑈 , 𝑈 𝑥)-plane 

𝑯 𝒙 = 𝟎 𝑯 𝒙 = 𝒆−𝒙
𝟐/𝟐 

Full (𝑥, 𝑈 , 𝑈 𝑥)-plane 



The small eigenvalue 

Normally: translational invariance eigenvalue 𝜆 = 0 

 

 

Adding terrain: eigenvalue gets perturbed 

Perturbed eigenvalue           eigenvalue of ODE 

 

 

For terrains with small slope and curvature: 

(with rigorous computations) 

 

 

 

 

 

 

Bifurcation diagram 



Adding more pulses 

Normally: 

Now: 

Stationary two-pulse solutions exist! 


