Pulse Solutions in an extended-Klausmeier model with spatially varying coefficients

Robbin Bastiaansen

Co-Authors: Martina Chirilus-Bruckner & Arjen Doelman

The extended-Klausmeier model

 $U_t = U_{xx} + (H_x U)_x + a - U - UV^2$ $V_t = D^2 V_{xx}$ $-mV + UV^2$

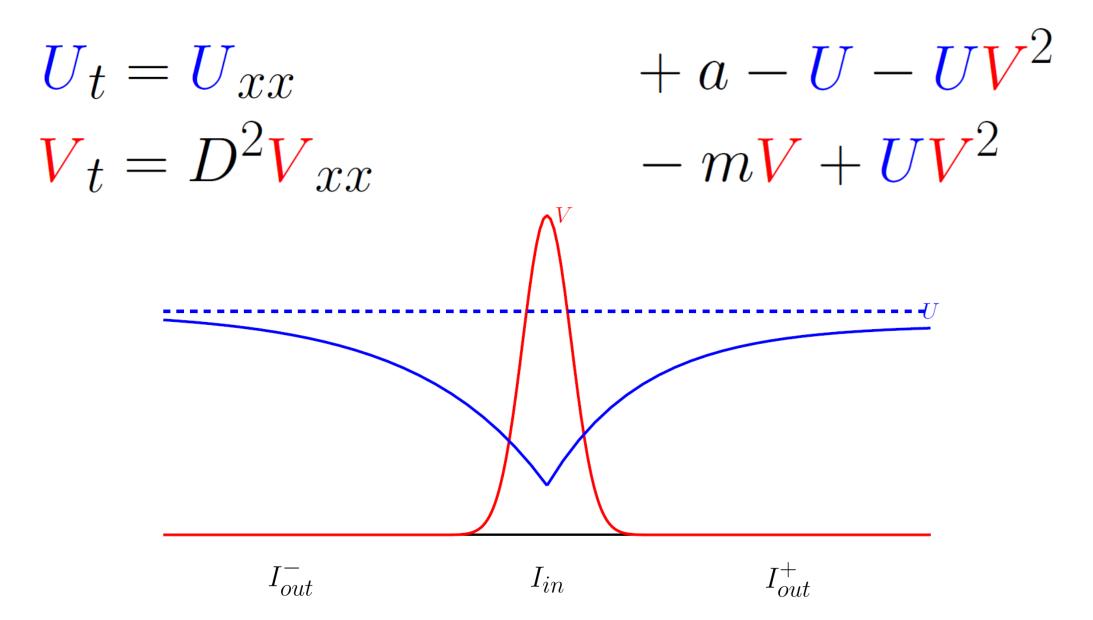
Variables:

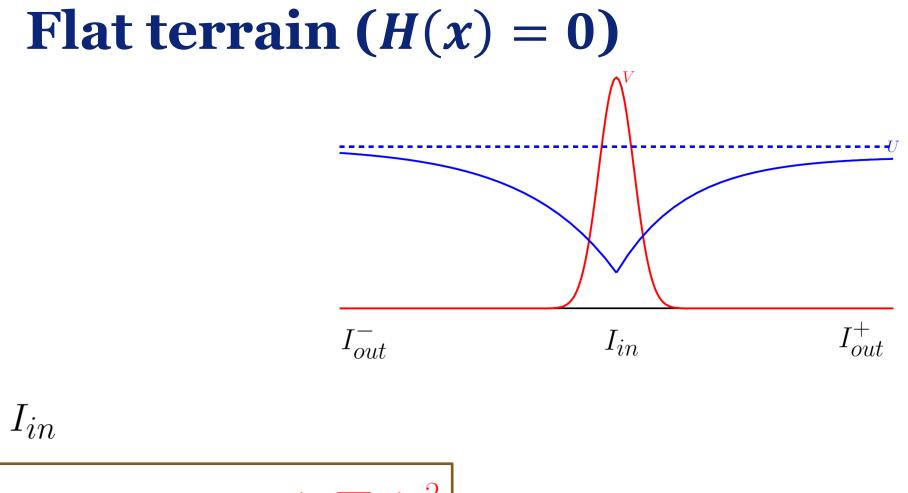
U Water

Vegetation m Mort

Parameters: a_{Rainfall} m Mortality of plants D Small parameter H Height of terrain P_1 P_2 P_3

Flat terrain (H(x) = 0)

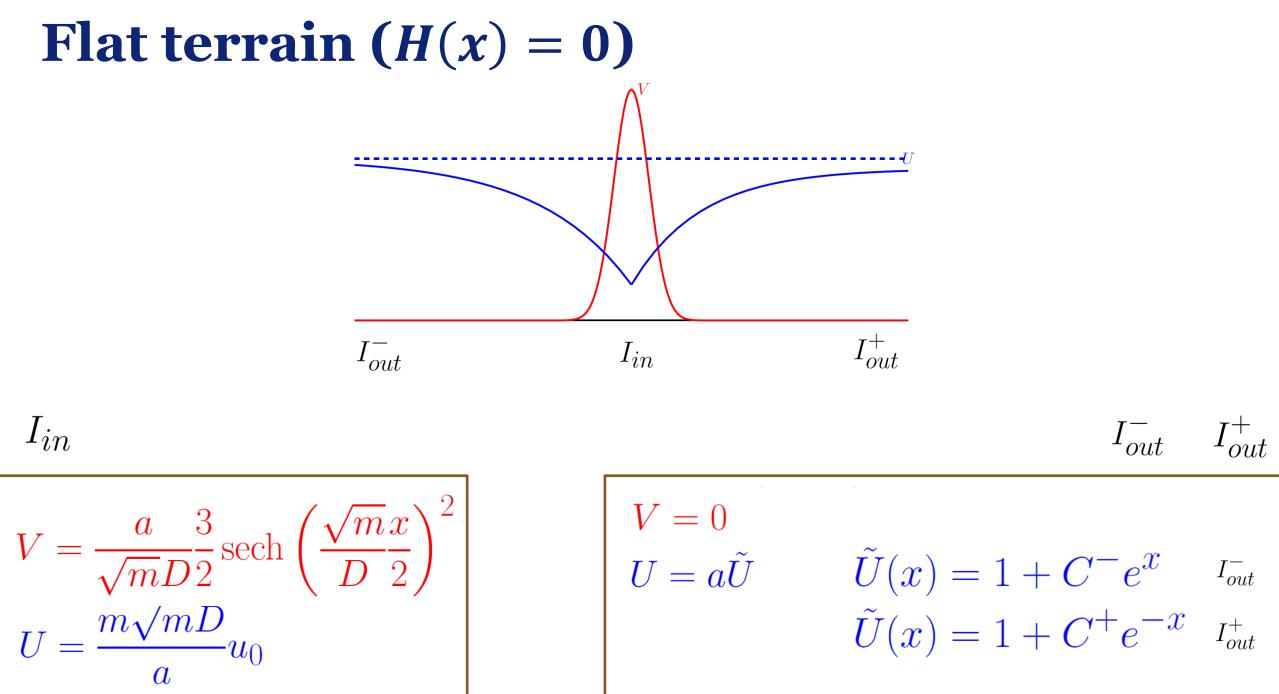




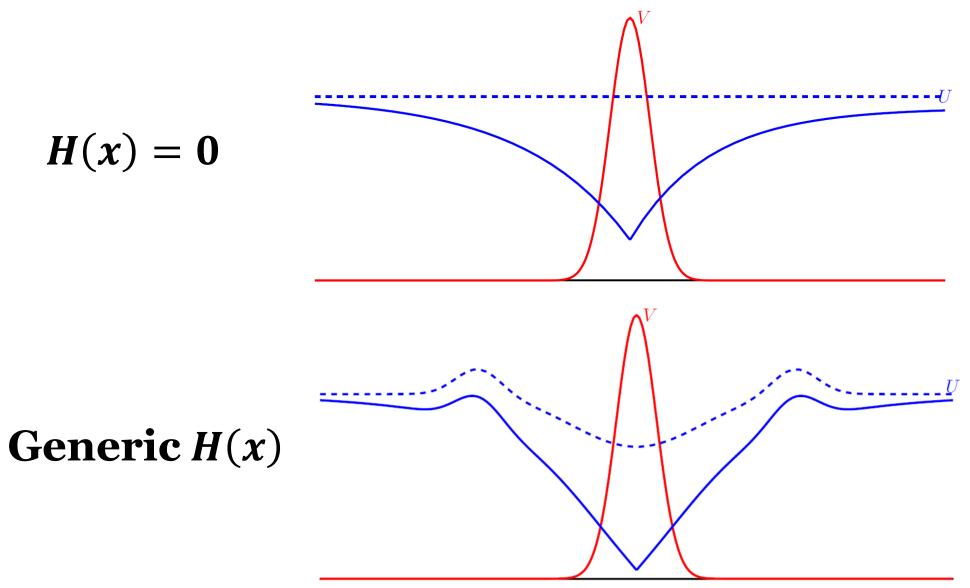
$$V = \frac{a}{\sqrt{mD}} \frac{3}{2} \operatorname{sech} \left(\frac{\sqrt{m}x}{D}\right)^{2}$$
$$U = \frac{m\sqrt{mD}}{a} u_{0}$$

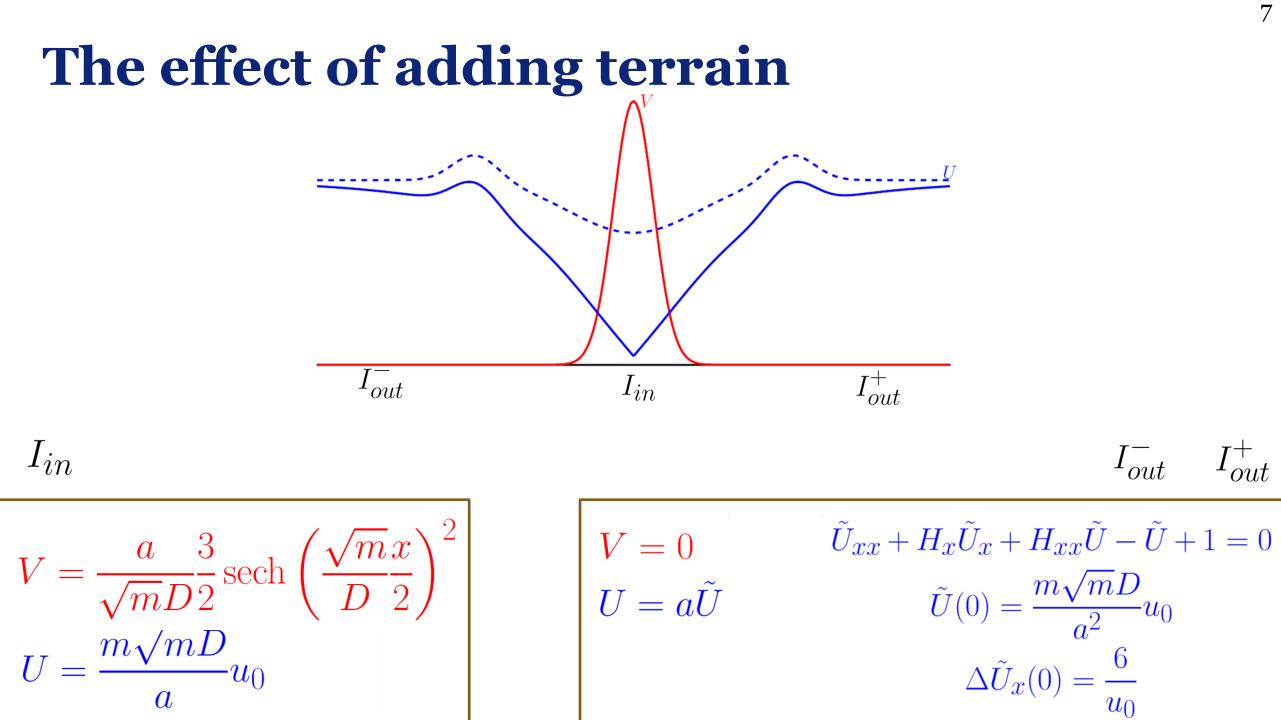
Flat terrain
$$(H(x) = 0)$$

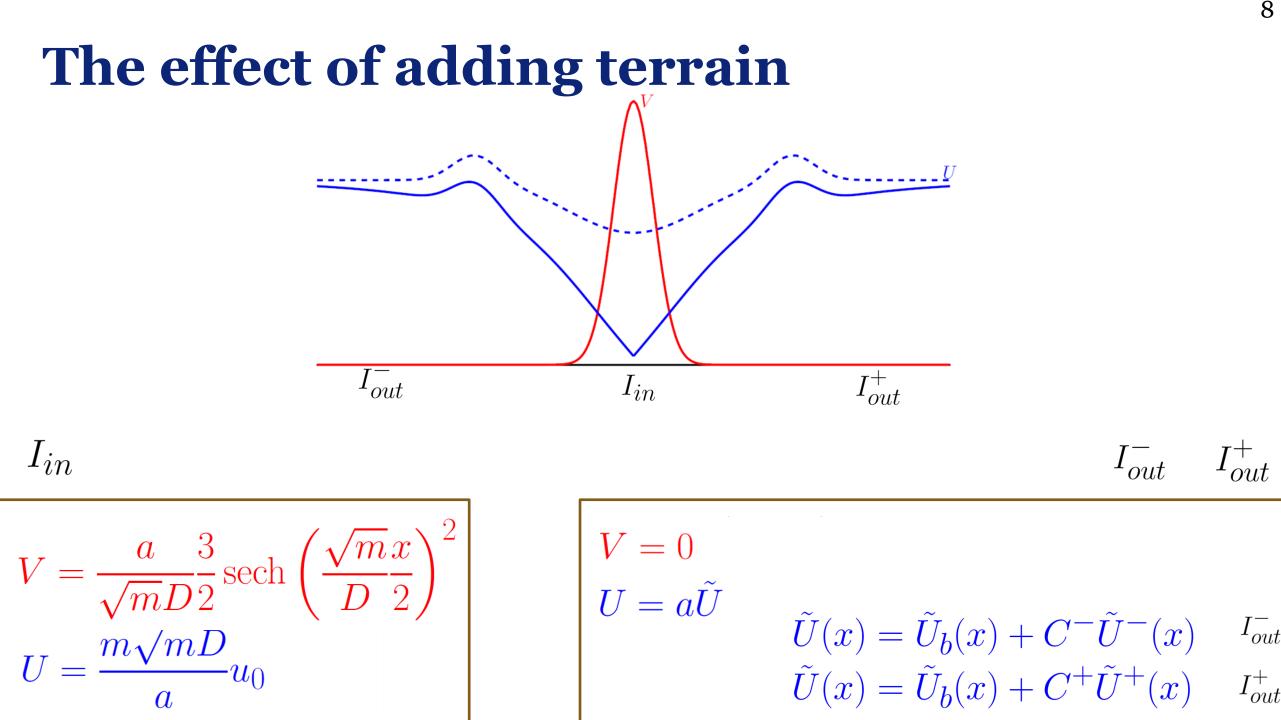
 I_{out}
 I_{in}
 I_{out}
 I_{in}
 I_{out}
 I_{out



The effect of adding terrain



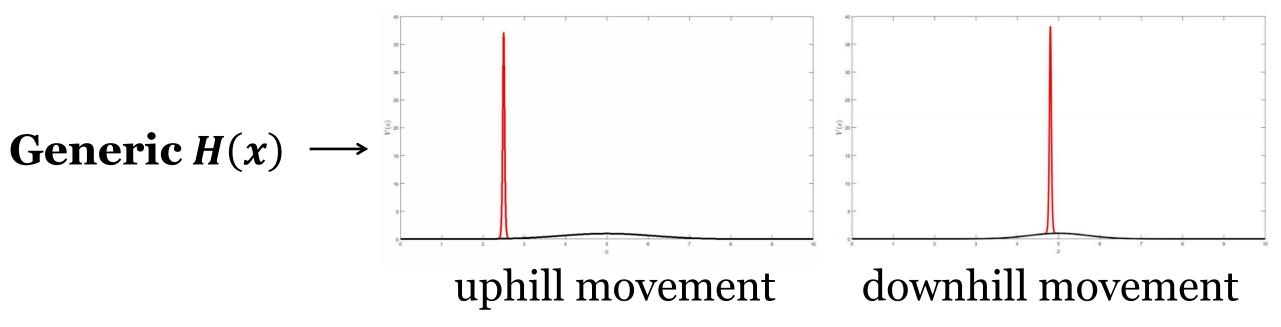




Movement of pulses

$$\frac{dP}{dt} = \frac{Da^2}{m\sqrt{m}6} \left[\tilde{U}_x(P^+)^2 - \tilde{U}_x(P^-)^2 \right]_{\text{conform [W.Chen \& M. Ward, 2009]}}$$

 $H(x) = 0 \longrightarrow$ no movement $H(x) = Sx \longrightarrow$ uphill movement [K. Siteur et al, 2014], [L. Sewalt & A. Doelman, 2017]



Rigorous existence proofs

Recall: $\tilde{U}_{xx} + H_x\tilde{U}_x + H_{xx}\tilde{U} - \tilde{U} + 1 = 0$ $\tilde{U}(0) = \frac{m\sqrt{mD}}{a^2}u_0$ $\Delta \tilde{U}_x(0) = \frac{6}{u_0}$ u_{\cap} AND

A pulse has a movement speed

$$\frac{dP}{dt} = \frac{Da^2}{m\sqrt{m}6} \left[\tilde{U}_x(P^+)^2 - \tilde{U}_x(P^-)^2 \right]$$

Stationary situation (no movement) \tilde{U}_x

Rigorous existence proof - (H(x) = 0**)**

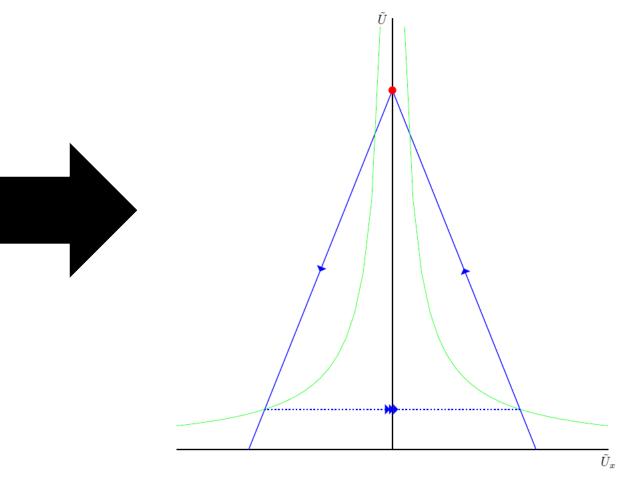
Recall:

$$\tilde{U}_{xx} - \tilde{U} + 1 = 0$$
$$\tilde{U}(0) = \frac{m\sqrt{mD}}{a^2}u_0$$
$$\Delta \tilde{U}_x(0) = \frac{6}{u_0}$$

AND

A pulse has a movement speed

$$\frac{dP}{dt} = \frac{Da^2}{m\sqrt{m}6} \left[\tilde{U}_x(P^+)^2 - \tilde{U}_x(P^-)^2 \right]$$

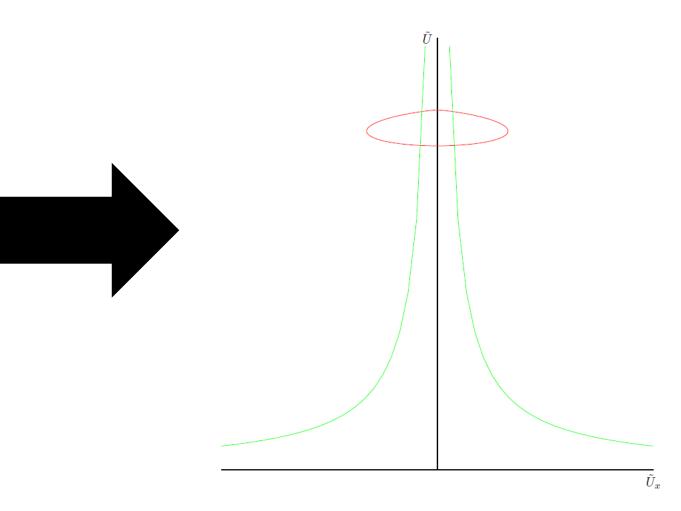


Stationary situation (no movement)

Rigorous existence proof – Specific H(x)

Bounded solution:

 $\tilde{U}_b(x)$



Projected $(\widetilde{U}_x, \widetilde{U})$ -plane

Rigorous existence proof – Specific H(x)

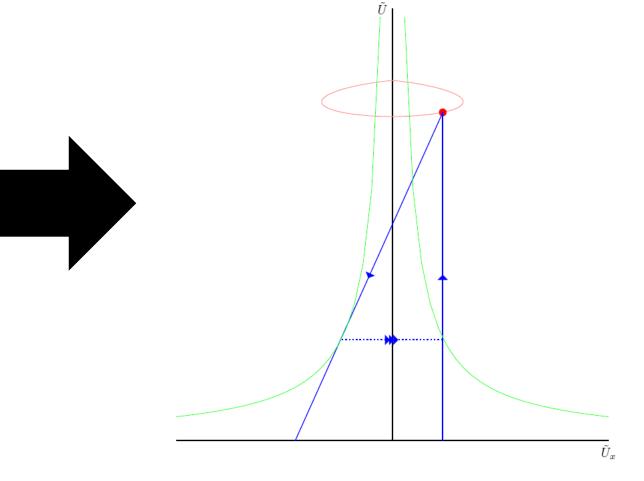
Recall: $\tilde{U}_{xx} + H_x \tilde{U}_x + H_{xx} \tilde{U} - \tilde{U} + 1 = 0$

Bounded solution:

 $\tilde{U}_b(x)$

Stable/Unstable manifolds:

UNSTABLE $ilde{U}_b(x) + C^- ilde{U}^-(x)$ Stable $ilde{U}_b(x) + C^+ ilde{U}^+(x)$



 $(\widetilde{U}_x, \widetilde{U})$ -plane for specific x

Existence theorem

If H(x) is symmetric in x = 0 and $\delta \coloneqq \sup_{x \in \mathbb{R}} \sqrt{H_x(x)^2 + H_{xx}(x)^2} < \frac{\sqrt{2}-1}{8}$ *then* a stationary symmetric one-pulse solution to the PDE exists (under the standard Gray-Scott magnitude assumptions on the parameters)

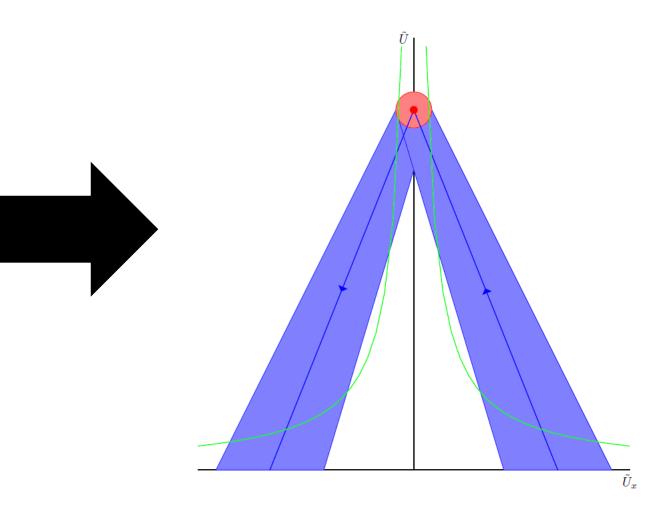
Heart of the proof is the 'rhoughness of exponential dichotomies'

 \rightarrow This gives bounds on stable and unstable manifolds and the bounded solution

Recall: $\tilde{U}_{xx} + H_x \tilde{U}_x + H_{xx} \tilde{U} - \tilde{U} + 1 = 0$

AND

Bounds from exponential dichotomies



Bounds via exponential dichotomies

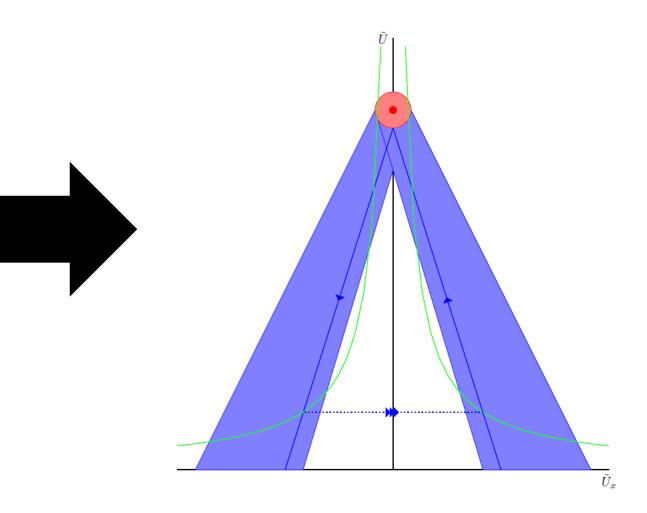
Recall: $\tilde{U}_{xx} + H_x \tilde{U}_x + H_{xx} \tilde{U} - \tilde{U} + 1 = 0$

AND

Bounds from exponential dichotomies

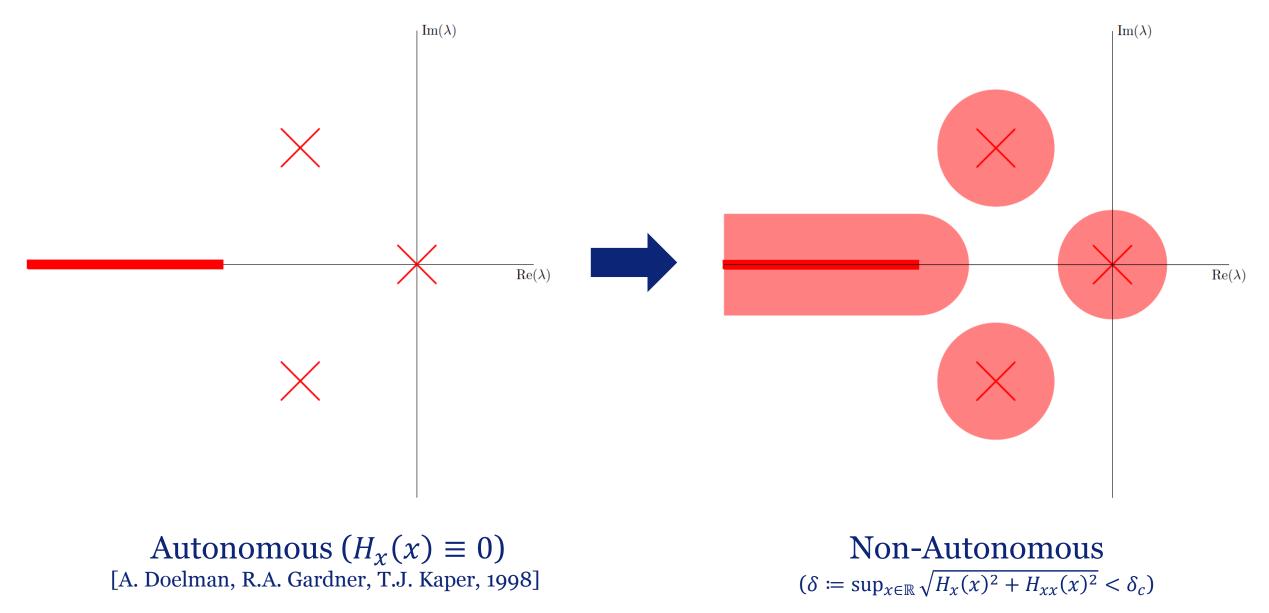
AND

H(x) is symmetric in x = 0



Using symmetry arguments

Stability of one-pulse solution

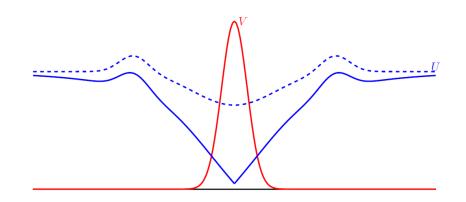


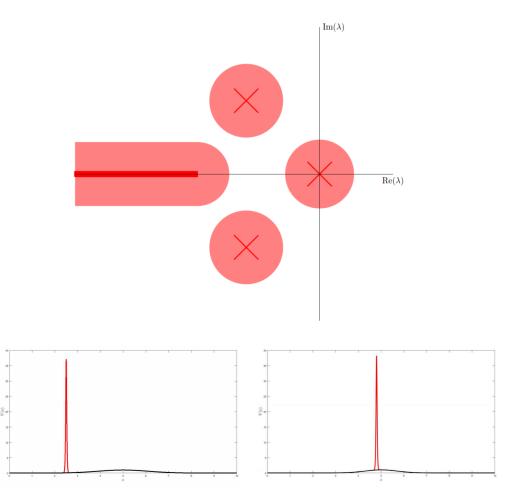
Summary

- **Existence** <u>stationary</u> one-pulse solution
- with explicit expressions
- with rhoughness of exponential dichotomies

Stability

- big eigenvalues have negative real part
- small eigenvalue can become unstable
 - Related to movement of the pulse
 - Both uphill and downhill movement possible

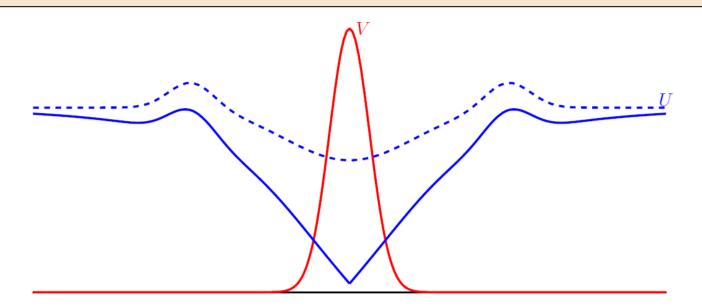




Existence theorem

If H(x) is symmetric in x = 0 and $\delta \coloneqq \sup_{x \in \mathbb{R}} \sqrt{H_x(x)^2 + H_{xx}(x)^2} < \frac{\sqrt{2}-1}{8}$ then

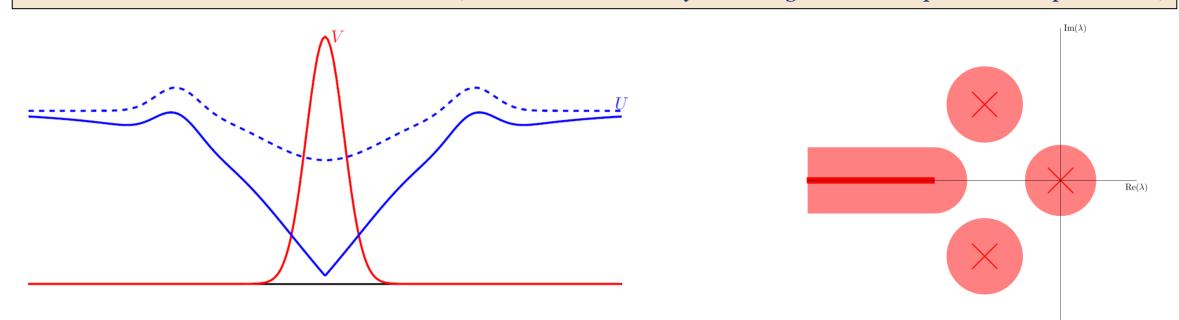
a stationary symmetric one-pulse solution to the PDE exists (under the standard Gray-Scott magnitude assumptions on the parameters)

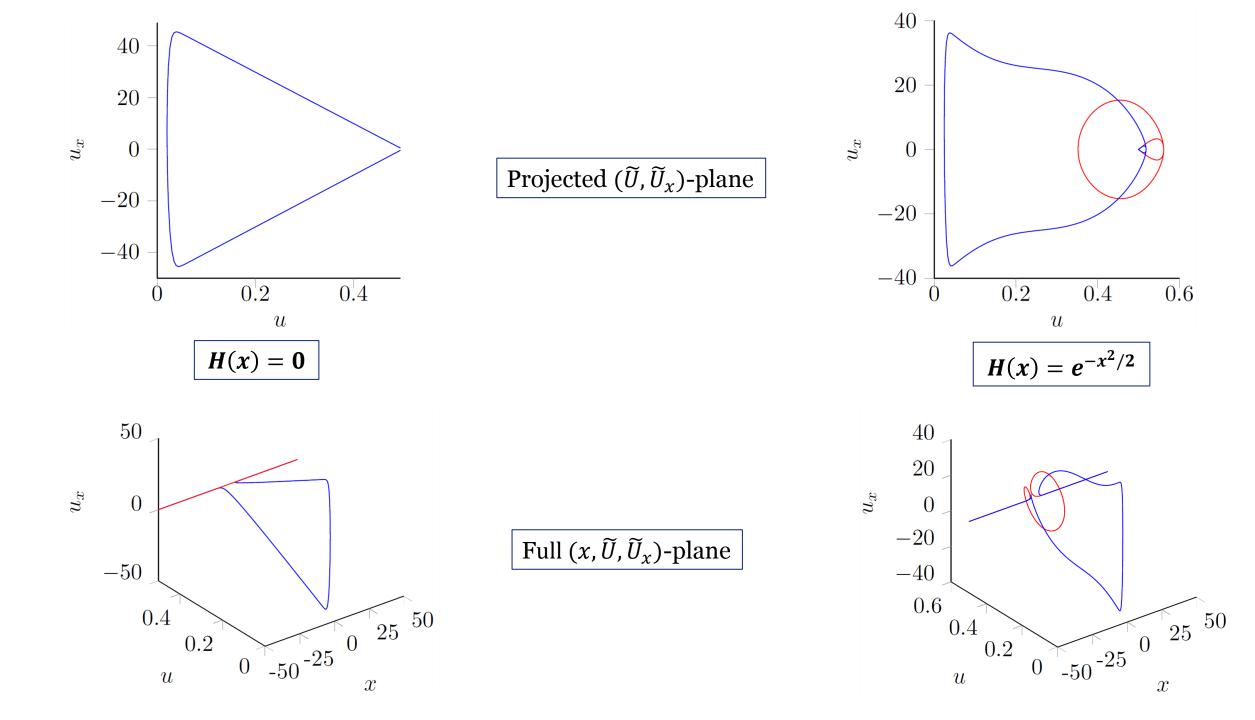


Existence theorem

If
$$H(x)$$
 is symmetric in $x = 0$ and $\delta \coloneqq \sup_{x \in \mathbb{R}} \sqrt{H_x(x)^2 + H_{xx}(x)^2} < \frac{\sqrt{2}-1}{8}$
then

a stationary symmetric one-pulse solution to the PDE exists (under the standard Gray-Scott magnitude assumptions on the parameters)





The small eigenvalue

Normally: translational invariance \iff eigenvalue $\lambda = 0$

Adding terrain: eigenvalue gets perturbed Perturbed eigenvalue ↔ eigenvalue of ODE

For terrains with small slope and curvature: *(with rigorous computations)*

