Behaviour of self-organised patterns in systems with varying parameters

Robbin Bastiaansen

Delft Software Days, 13 November 2019

Robbin Bastiaansen

- PhD in Applied Mathematics
 ➢ pattern formation
- main application is *Ecology* ➢ desertification

TODAY:

• dynamics of patterns
 ➢ focus on general insights

PhD thesis

lines in the sand

Behaviour of self-organised vegetation patterns in dryland ecosystems

hdl.handle.net/1887/74366

Robbin Bastiaansen

The desertification process

Desertification – emergent patterns

(a) Bands in Somalia

(b) Gaps in Niger

(c) Spots in Zambia

(d) Maze in Sudan

Self-organised patterns

- NO driving inhomogeneity
- BUT e.g. scale-dependent feedback

Ecology review: [Rietkerk & Van de Koppel, 2007]

Examples

mussel beds

vegetation in coastal systems

marsh formation

river vegetation

Mathematical treatment

Localized patterns ↔ localized structures Seperation of scales ↔ small parameter

Archetypical ecosystem model

Extended-Klausmeier model

$$w_t = w_{xx} + (h(\mathbf{x})_x w)_x - w + a(\mathbf{t}) - wv^2$$

$$v_t = D^2 v_{xx} - mv - mv + wv^2$$

 \frown

Understanding pulses in the model

• PDE: infinite-dimensional state space

 P_2

 P_3

 P_1

- Reduction possible because of localized structures
 - 1. <u>Pulse-location ODE</u>: describe movement of pulses
 - 2. <u>Stability criterium</u>: test if configuration is feasible

How to derive the ODE?

$$w_{t} = w_{xx} + (h(\mathbf{x})_{x}w)_{x} - w + a(\mathbf{t}) - w_{t}$$

$$v_{t} = D^{2}v_{xx} - mv + wv$$
INNER regions:
$$0 = D^{2}v_{xx} - mv + wv^{2}$$

$$\longrightarrow v_{p} (x - P_{j}(\mathbf{t}))$$

OUTER regions:

$$0 = w_{xx} + (h(\mathbf{x})_x w)_x - w + a(\mathbf{t})$$

Match solutions at boundaries:

$$\longrightarrow \frac{dP_j}{dt} = \frac{Da^2}{m\sqrt{m}} \left[w_x (P_j^+)^2 - w_x (P_j^-)^2 \right]$$

.2

9

2. Stability criterium

Enough resources to sustain all vegetation patches?

Depends on amount of rainfall and distance between patches

high rainfall

medium rainfall

low rainfall

2. Stability criterium

Enough resources to sustain all vegetation patches?

Depends on amount of rainfall and distance between patches

high rainfall

medium rainfall

low rainfall

What happens when outside feasible region?

irregular configuration:	One patch disappears (least amount of biomass)
regular configuration:	Half of the patches disappears (wavelength doubling)

Dynamics of disappearing pulses

(a) ODE

Numerical simulations support theory

New insight: the effect of topography

Vegetation pulses can move uphill and downhill

Pulses during climate change (1)

- Competition of two effects:
- 1. Pulse rearrangement
- 2. Shrinking of feasible region

Pulses during climate change (2)

- Competition of two effects:
- Pulse rearrangement
- 2. Shrinking of feasible region

Pulses during climate change (3)

Rate of climate change

Summary

PDE to ODE reduction captures

- i. Pattern rearrangement
- ii. Pattern transitions

Reduction works for *Localized* patterns

- Applicable in many systems
- BUT: reduction needs to be redone

Example: insights in desertification

- Influence of topography
- Importance of rate of change

~~~ LIST OF COAUTHORS ~~~

MathematiciansArjen Doelman (Leiden)Ecologists (theorists)Maarten Eppinga (Zürich)

Martina Chirilus-Bruckner (Leiden)

Max Rietkerk (Utrecht)