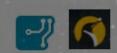


Multivariate Climate Projections

More Accurate Equilibrium Estimations

Evolution of Climate Feedbacks



Climate Response

The change in observable due to climate forcing (e.g. CO2)
Global Climate models are computationally expensive

□ not all time scales can be simulated
□ not all forcings can be simulated

» Need for extrapolation and estimation techniques

Problem:

Classic methods are univariate

⁽²⁾ Everything is assumed to relate linearly to temperature

Solution:

Incorporate additional observables in multivariate methods

- Leads to more accurate estimates
- Leads to multivariate projections

Robbin Bastiaansen

- Background in (Applied) Mathematics
- 2015-2019:

PhD @ Leiden University on Pattern Formation and Desertification

(with Arjen Doelman, Martina Chirilus-Bruckner & Max Rietkerk)

 Since JAN 2020: PostDoc @ IMAU, Utrecht University on Climate Sensitivity (with Anna von der Heydt & Henk Dijkstra)

Work within H2020 project TiPES: Tipping Points in the Earth System

Most used Climate Sensitivity Metrics

Equilibrium Climate Sensitivity (ECS)

change in equilibrium temperature due to (instantaneous) doubling of CO2

Transient Climate Response (TCR)

change in temperature after 100 years with 1% CO2 increase per year (until doubling)

Some Details

Dedicated experiments with climate models

Start from equilibrium with pre-industrial levels of CO2

Change compared to control run

Mathematical Context

$$\frac{dy}{dt} = f(y; \mu(t))$$

y : state variable μ : forcing parameter

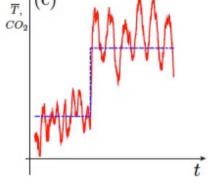


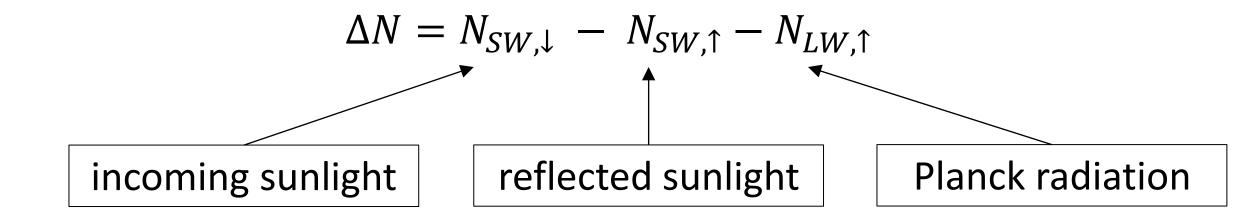
Image source: [Ghil and Lucarini, 2020]

Mathematical Idea behind

Classic Estimation Techniques

Idea behind estimation methods (1)

Warming is due to net positive radiative imbalance



When $\Delta N = 0$ no more warming:

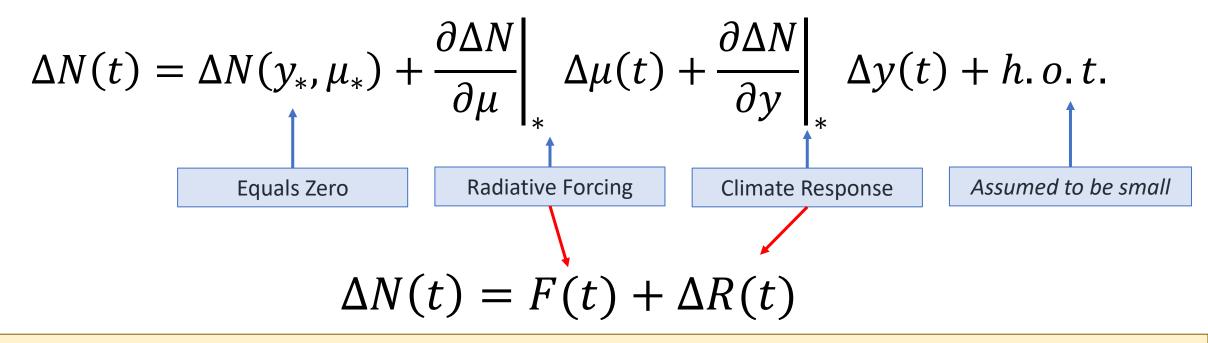
 \rightarrow equilibrium warming $\Delta T_* = T_* - T_0$

Idea behind estimation methods (2)

Express imbalance as function of system state

$$\Delta N(t) = \Delta N(y(t), \mu(t))$$

Near equilibrium y_* (with $\mu = \mu_*$) a Taylor expansion gives



Implicit assumption: relevant climate dynamics are approximately a linear system

Idea behind estimation methods (3)

Climate Response ΔR is sum of feedback contributions:

 $\Delta R(t) = \sum_{j \in \mathcal{F}} \Delta R_j(t)$ Then, express as function of temperature *T*:

$$\Delta R_j(t) = \Delta R_j(T(t))$$

Taylor expansion gives

$$\Delta R_j(t) = \left. \frac{\partial \Delta R_j}{\partial T} \right|_* \Delta T + h.o.t.$$

That is,

$$\Delta R_j(t) = \lambda_j \, \Delta T(t)$$

$\Delta R_j(t) \coloneqq \frac{\partial \Delta N}{\partial y_j} \Big|_* \Delta y_j(t)$

${\mathcal F}$ is set of Climate Feedbacks:

- Planck Feedback
- Lapse Rate Feedback
- Surface Albedo Feedback
- Water Vapour Feedback
- Cloud Feedback

Classic Estimation Method: $\Delta N(t) = F(t) + \left(\sum_{j \in \mathcal{F}} \lambda_j\right) \Delta T(t)$

Implicit assumption: relevant climate dynamics play on approximately one mode

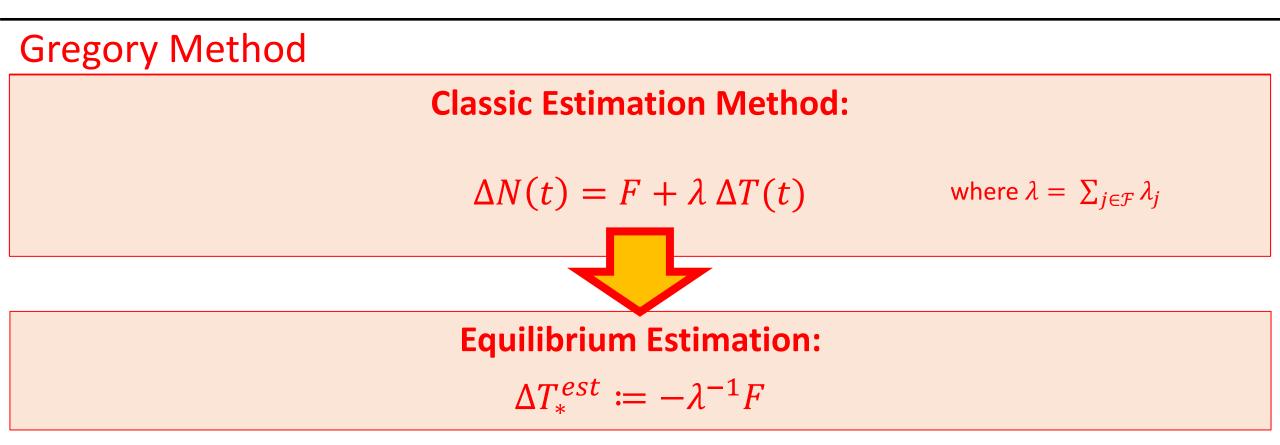
Part A More Accurate Equilibrium Estimation

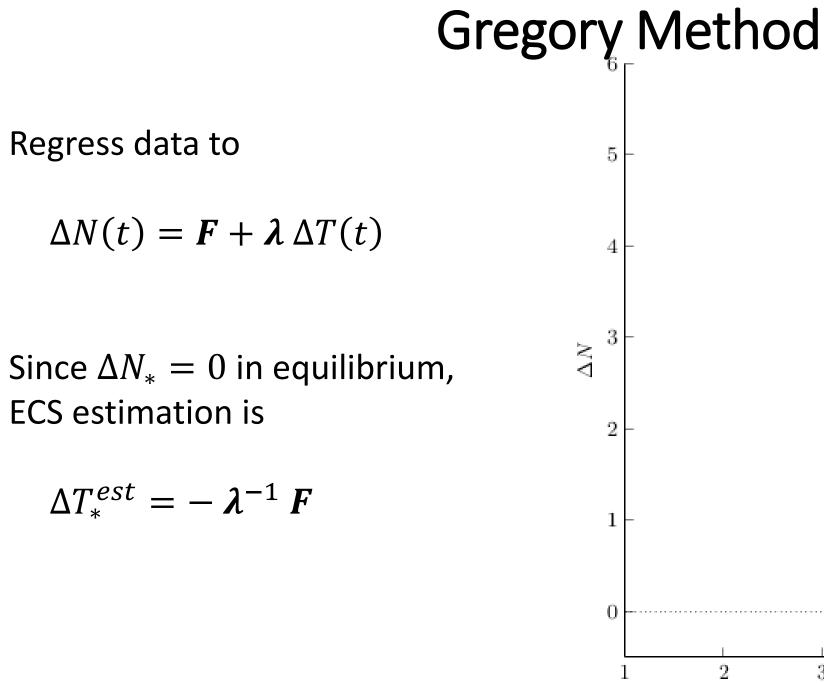
Equilibrium Estimations

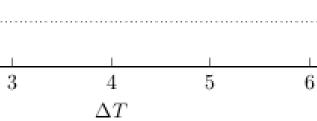
Experiment in model:

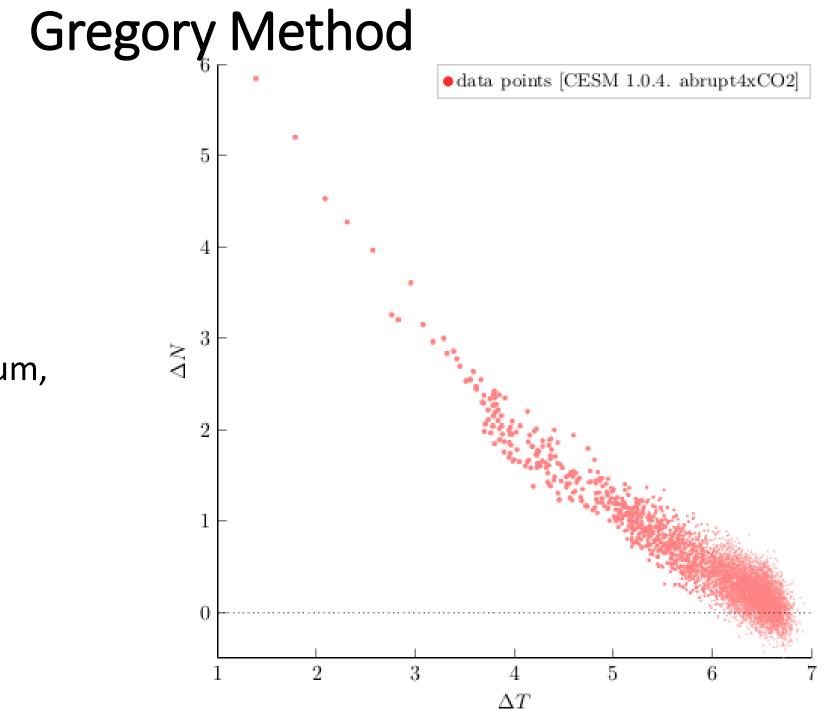
□ start in equilibrium at pre-industrial CO2

instant CO2 quadruppling from start







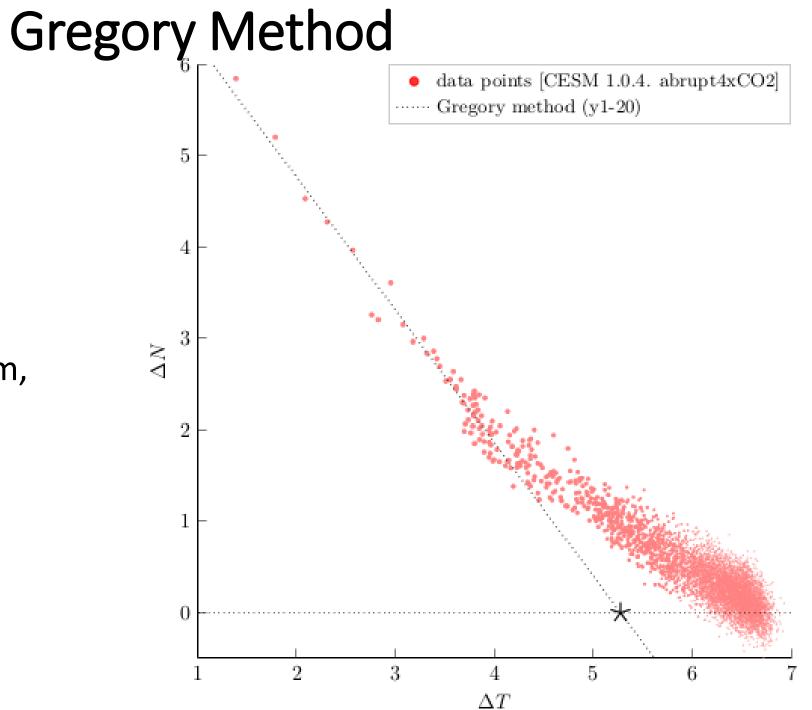


Regress data to

$$\Delta N(t) = \mathbf{F} + \boldsymbol{\lambda} \, \Delta T(t)$$

Since $\Delta N_* = 0$ in equilibrium, ECS estimation is

$$\Delta T_*^{est} = -\lambda^{-1} \mathbf{F}$$



Regress data to

$$\Delta N(t) = \mathbf{F} + \boldsymbol{\lambda} \, \Delta T(t)$$

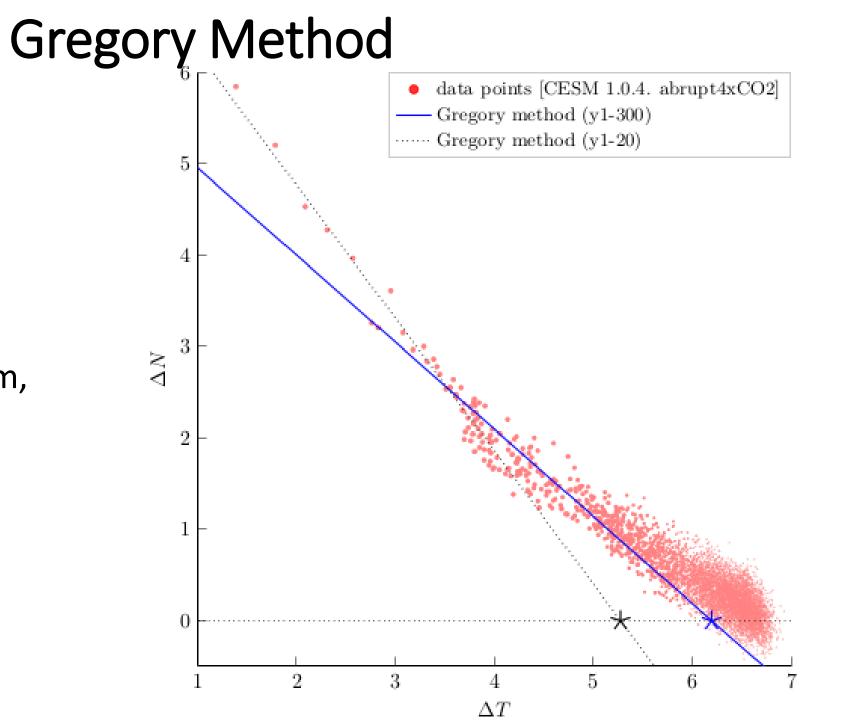
Since $\Delta N_* = 0$ in equilibrium, ECS estimation is

$$\Delta T_*^{est} = -\lambda^{-1} \mathbf{F}$$

$$\Delta N(t) = \mathbf{F} + \boldsymbol{\lambda} \, \Delta T(t)$$

Since $\Delta N_* = 0$ in equilibrium, ECS estimation is

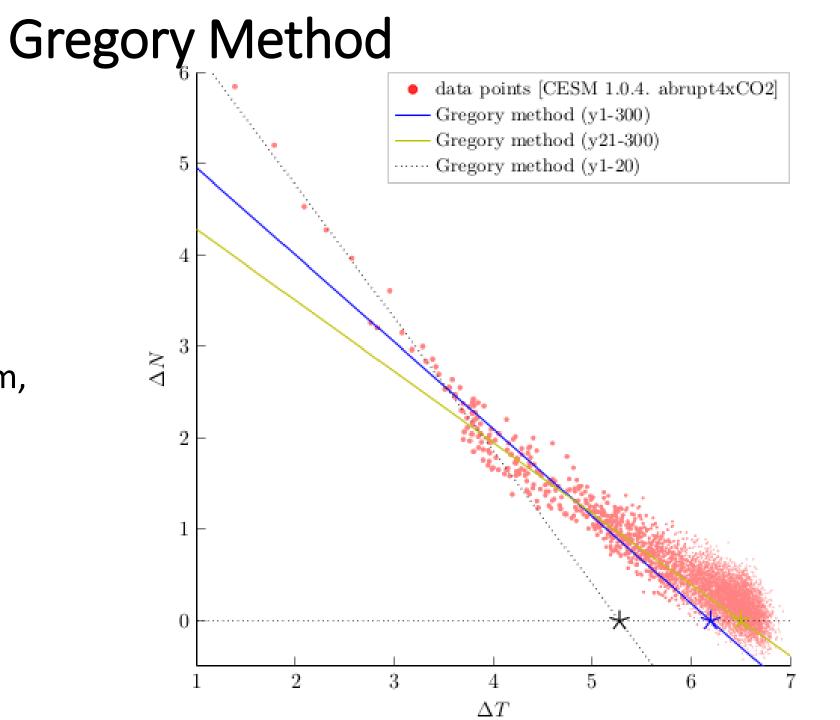
$$\Delta T_*^{est} = -\lambda^{-1} \mathbf{F}$$



$$\Delta N(t) = \mathbf{F} + \boldsymbol{\lambda} \, \Delta T(t)$$

Since $\Delta N_* = 0$ in equilibrium, ECS estimation is

$$\Delta T_*^{est} = -\lambda^{-1} \mathbf{F}$$

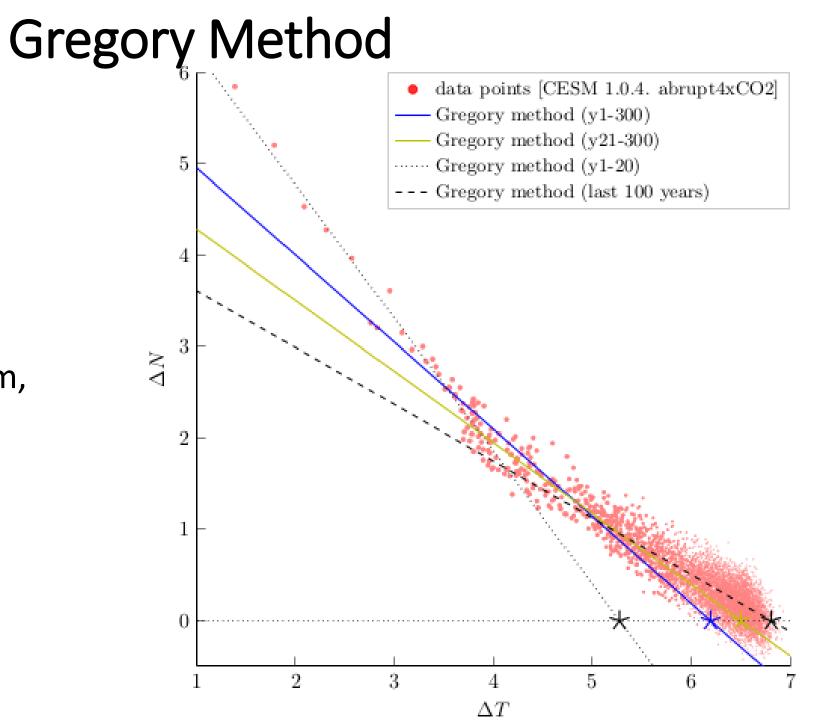


Regress data to

$$\Delta N(t) = \mathbf{F} + \boldsymbol{\lambda} \, \Delta T(t)$$

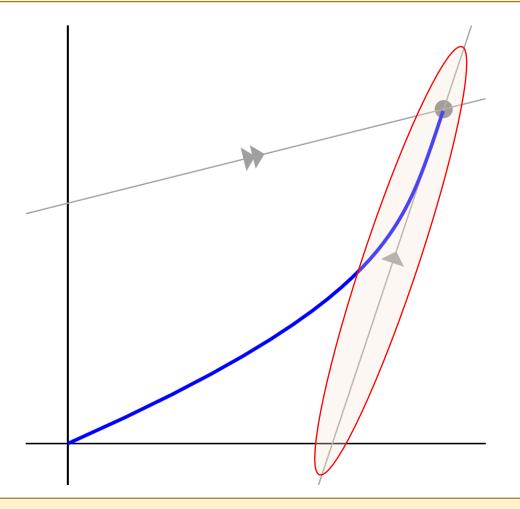
Since $\Delta N_* = 0$ in equilibrium, ECS estimation is

$$\Delta T_*^{est} = -\lambda^{-1} \mathbf{F}$$



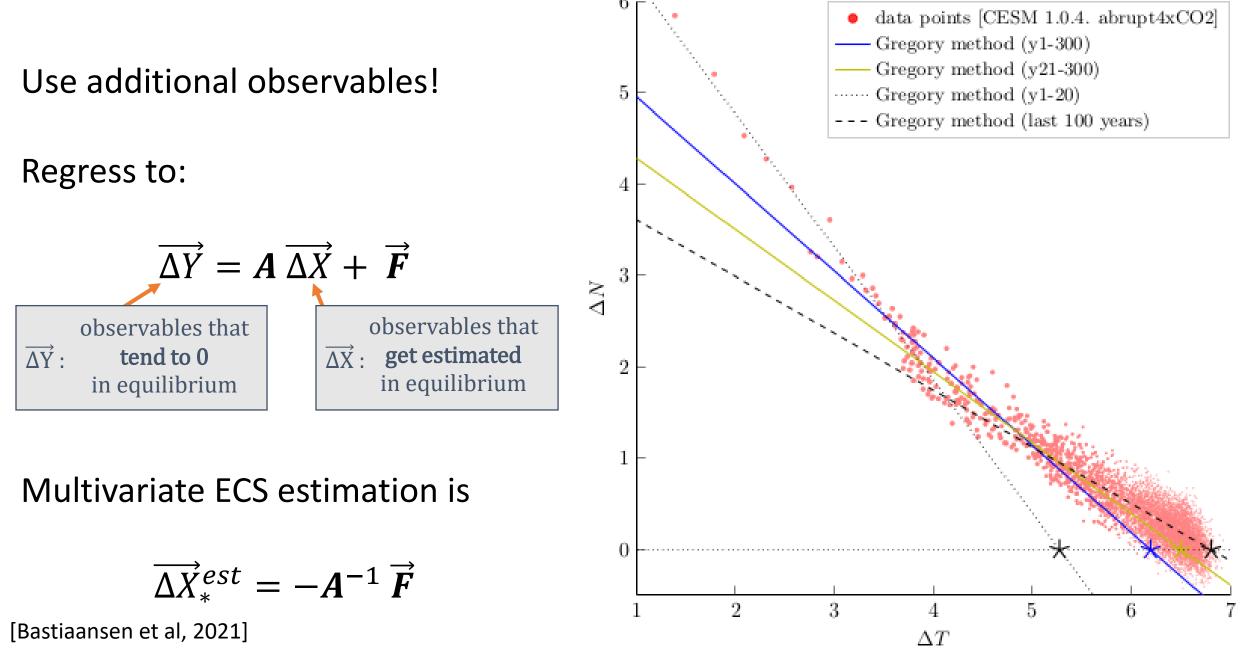
What is the problem?

Assumption 1: relevant climate dynamics are approximately a linear system

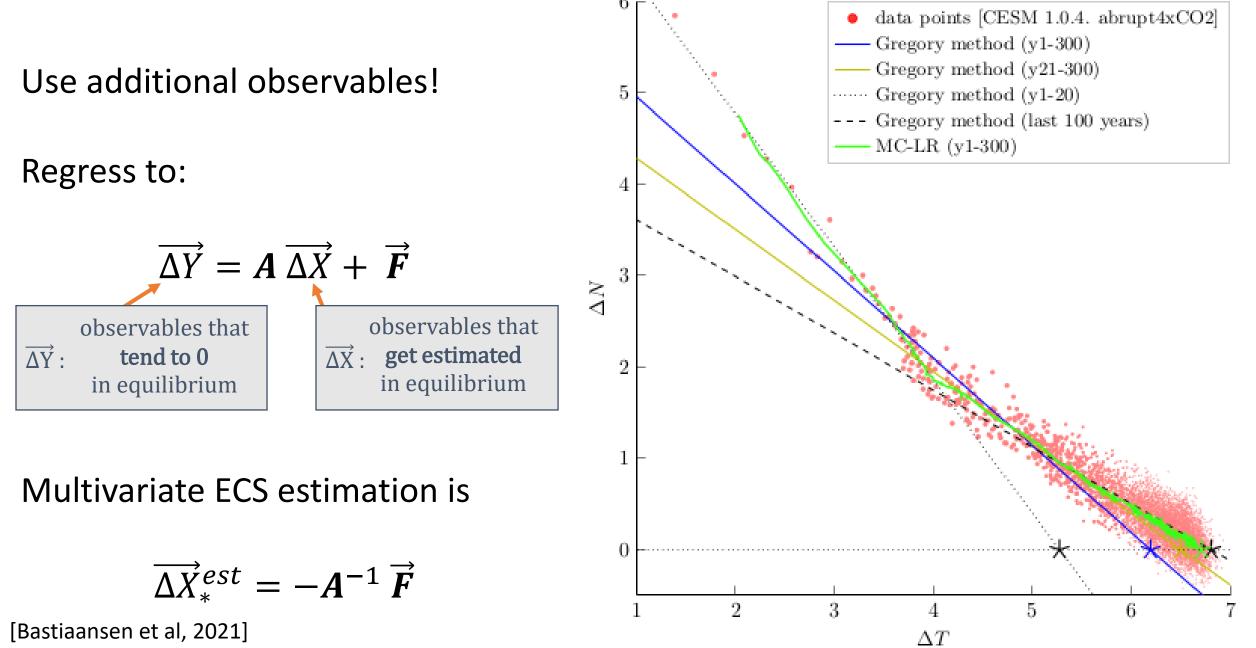


Assumption 2: relevant climate dynamics play on approximately one mode

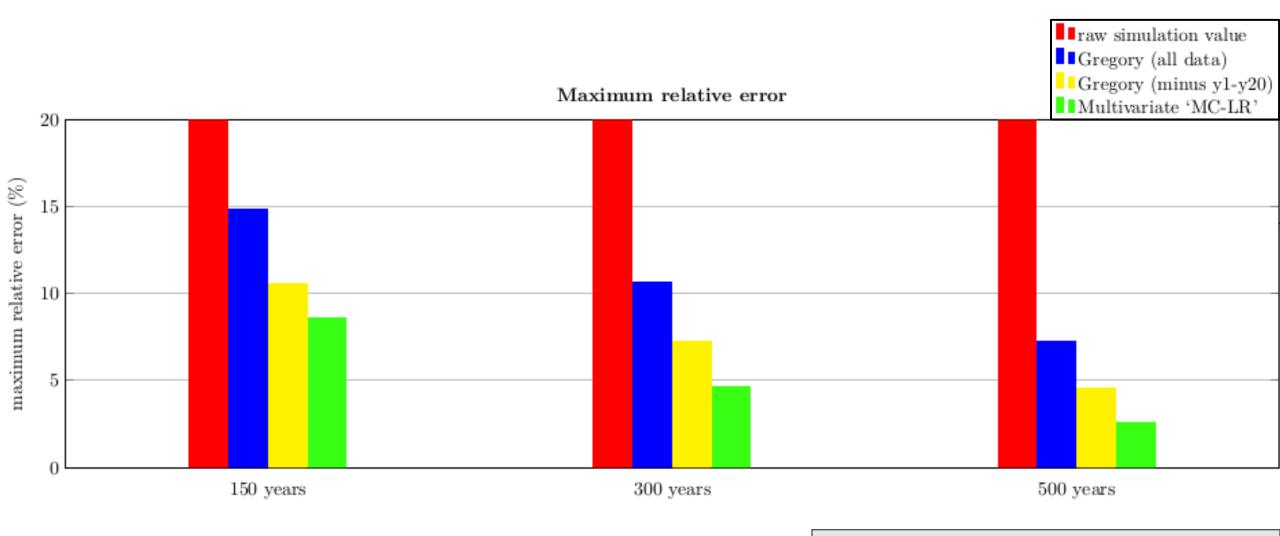
New Multicomponent Linear Regression Method



New Multicomponent Linear Regression Method



Other Global Climate Models

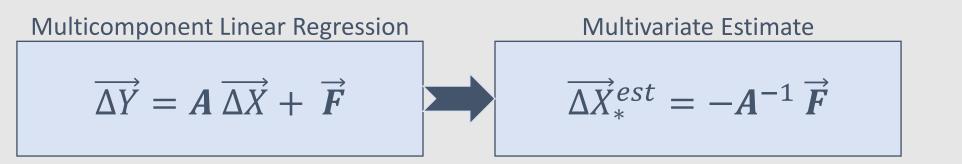


Computed as average of 11 millenia-long runs from LongRunMIP [Rugenstein et al, 2019]

[Bastiaansen et al, 2021]

Multivariate Estimations of Equilibrium Sensitivity

SUMMARY OF METHOD



More accurate estimates from short transient warming simulations

CAVEAT:

Finding observables is an art

Part B: Evolution of Climate Feedbacks

Climate Feedback Contributions

Back to

$$\Delta N(t) = F(t) + \Delta R(t)$$

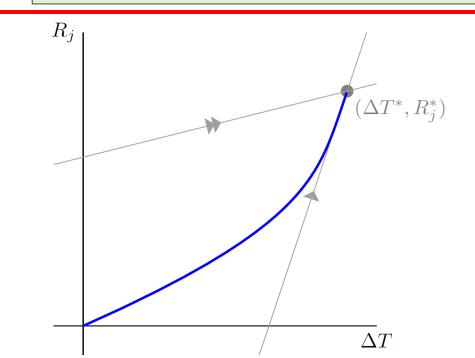
Climate Response ΔR is

sum of feedback contributions:

 $\Delta R(t) = \sum_{j \in \mathcal{F}} \Delta R_j(t)$

Classical treatment of feedbacks: $\Delta R_j(t) = \lambda_j \Delta T(t)$

- Water Vapour Feedback
- Cloud Feedback



Evolution of Observables

Linear Response Theory (& Koopman Theory):

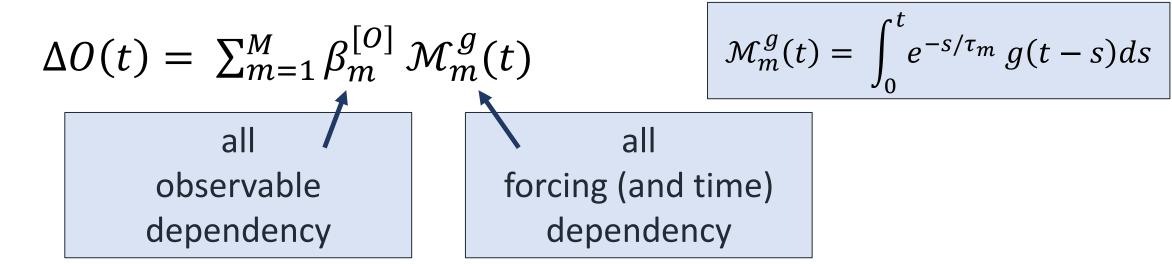
$$\frac{dO}{dt} = \mathcal{L}O + g(t)$$

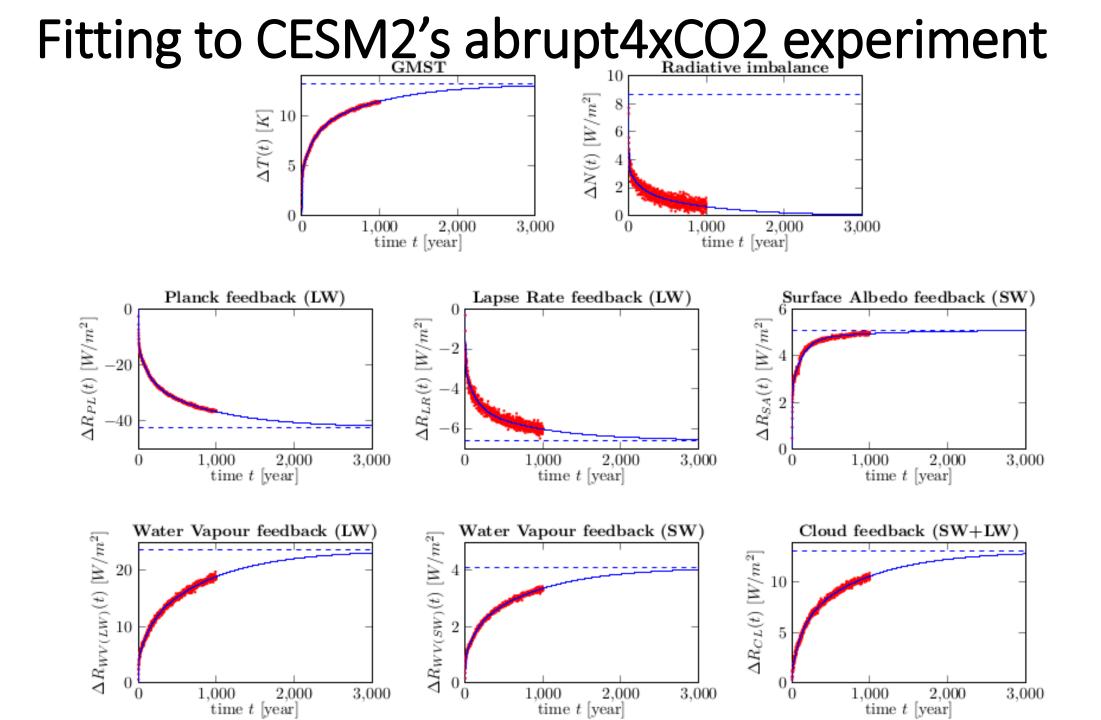
$$\Delta O(t) = \left(G^{[O]} * g \right)(t) = \int_0^t G^{[O]}(s) g(t-s) \, ds$$

Approximation of Green Function:

$$G^{[O]}(t) = \sum_{m=1}^{M} \beta_m^{[O]} e^{-t/\tau_m}$$

So:

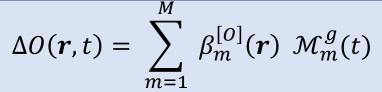


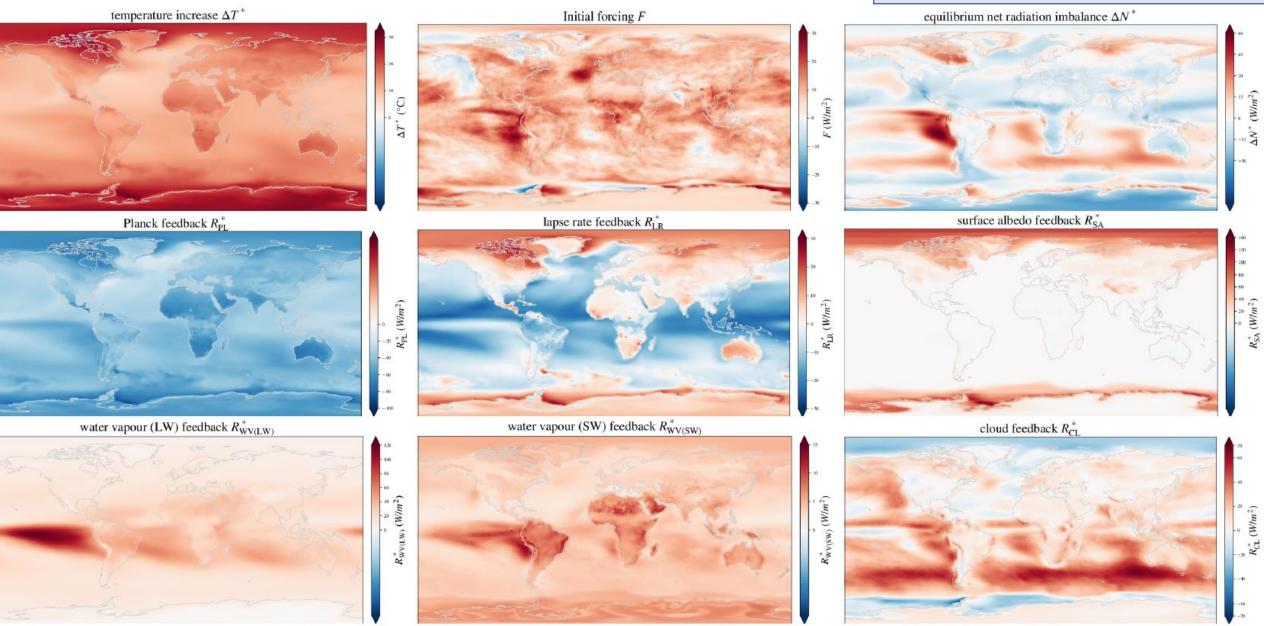


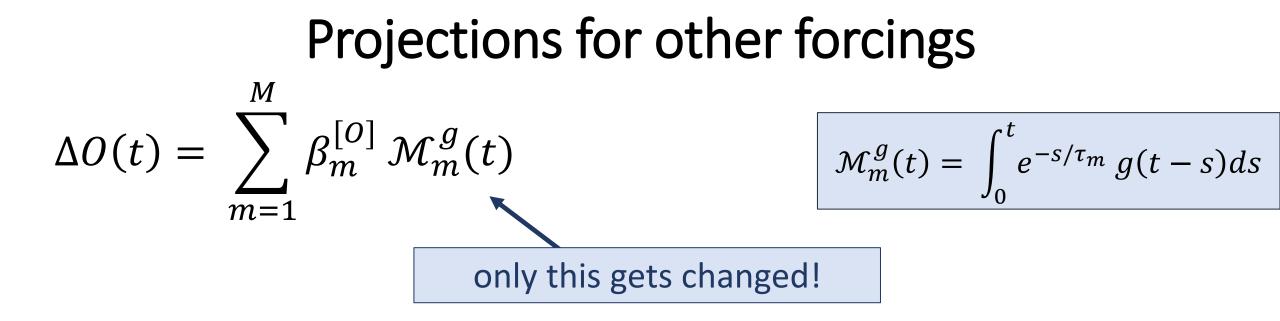
Analysis of CESM2's abrupt4xCO2 experiment

$\Delta O(t) = \sum_{m=1}^{M} \beta_m^{[O]} \mathcal{M}_m^g(t) \qquad \text{Define feedback strength per mode } \lambda_j^m \coloneqq \frac{\beta_m^{[R_j]}}{\beta_m^{[T]}}$				
	Mode 1	Mode 2	Mode 3	Equilibrium
$ au_{m}$	4.5 (± 0.1)	$127 (\pm 3.8)$	889 (± 50)	-
λ_m	$-1.28 (\pm 0.08)$	$-0.38~(\pm 0.03)$	$-0.37~(\pm 0.02)$	$-0.66(\pm 0.03)$
Planck (LW)	$-3.16 (\pm 0.02)$	$-3.24~(\pm 0.02)$	$-3.23~(\pm 0.01)$	$-3.21~(\pm 0.05)$
Lapse Rate (LW)	$-0.73~(\pm 0.03)$	$-0.50~(\pm 0.03)$	$-0.32~(\pm 0.03)$	$-0.50 (\pm 0.01)$
Surface Albedo (SW)	$+0.62 \ (\pm \ 0.04)$	$+0.56 (\pm 0.02)$	$+0.08 (\pm 0.10)$	$+0.39 (\pm 0.01)$
Water Vapour (LW)	$+0.97 (\pm 0.03)$	$+1.38 (\pm 0.02)$	$+2.71~(\pm 0.01)$	$+1.79 (\pm 0.04)$
Water Vapour (SW)	$+0.21~(\pm 0.09)$	$+0.26 (\pm 0.05)$	$+0.43 (\pm 0.02)$	+0.31 (± 0.01)
Clouds $(SW + LW)$	$+0.27 (\pm 0.36)$	$+1.19 (\pm 0.02)$	$+1.43 (\pm 0.01)$	$+1.00 (\pm 0.03)$
sum	$-1.82 (\pm 0.37)$	$-0.36~(\pm 0.07)$	$+1.09 (\pm 0.11)$	$-0.22 (\pm 0.08)$
missing	$+0.54 (\pm 0.38)$	$-0.02 \ (\pm \ 0.08)$	$-1.46 (\pm 0.11)$	$-0.43 (\pm 0.08)$

Spatial Response – Equilibrium Estimates

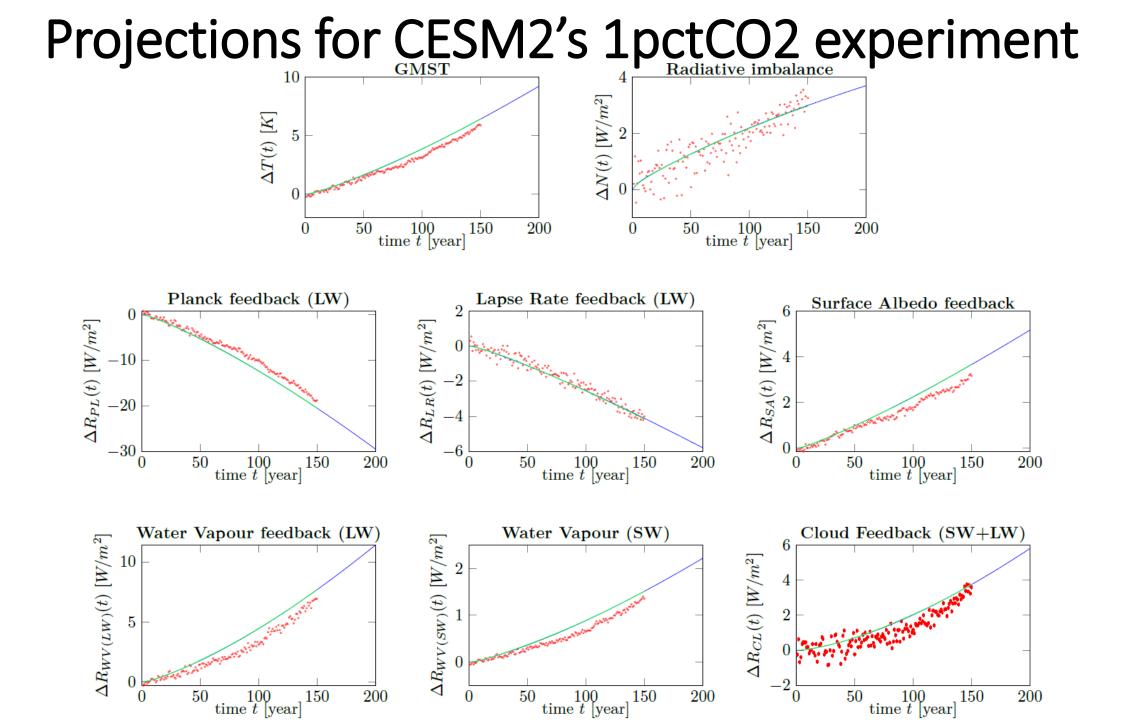






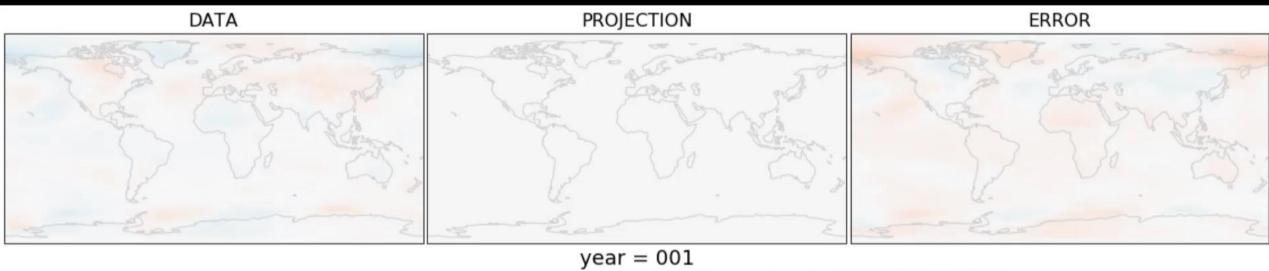
Linear Response Theory – CAVEATS:

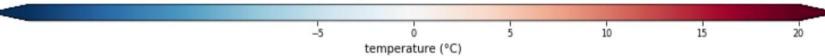
- i. forcings & responses should be 'small enough'
- ii. should look at ensemble means



Spatial projections for 1%CO2 experiment

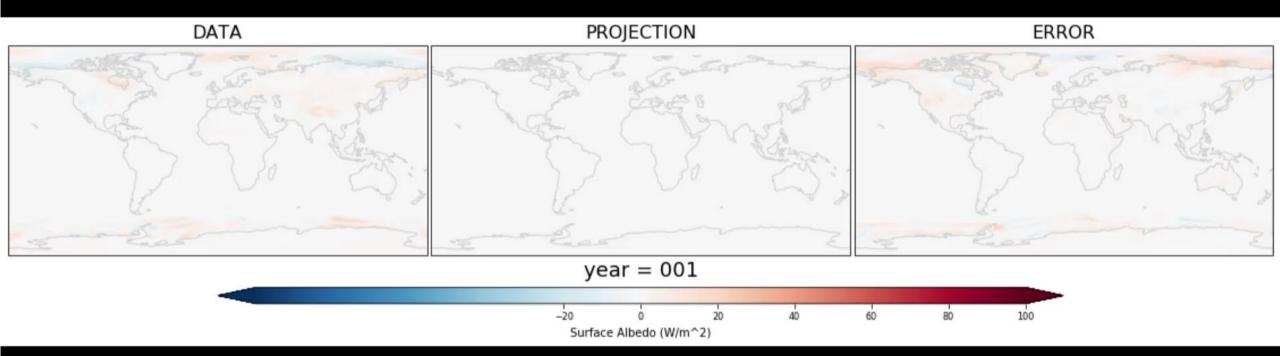
TEMPERATURE





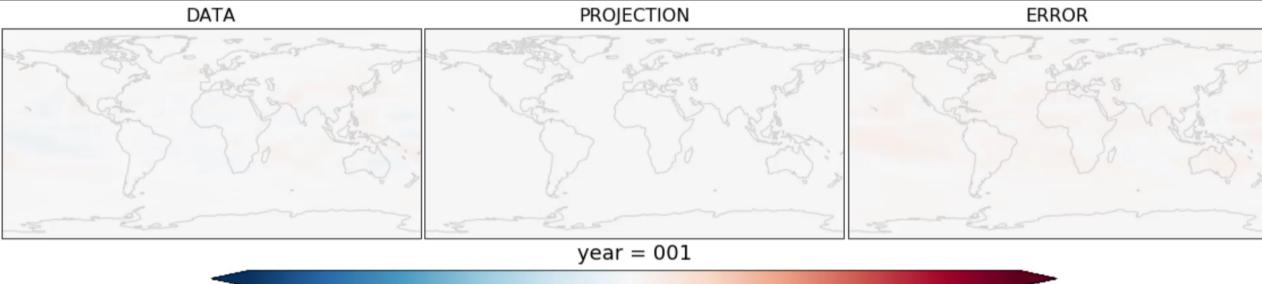
Spatial projections for 1%CO2 experiment

SURFACE ALBEDO FEEDBACK CONTRIBUTION



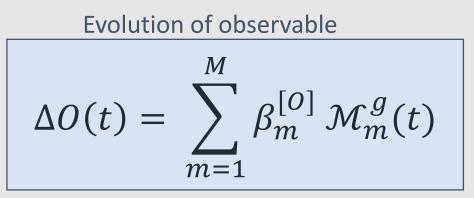
Spatial projections for 1%CO2 experiment

WATER VAPOUR (LW) FEEDBACK CONTRIBUTION



Projections of Climate Feedbacks

SUMMARY OF METHOD



$$\mathcal{M}_m^g(t) = \int_0^t e^{-s/\tau_m} g(t-s) ds$$

- Allows dissecting feedback contributions over time
 - Feedback strength per mode
 - Feedback missing on long time scale?
- Projections for other forcings possible via Linear Response Theory
 - Tests presented are promising

Summary

Assumption 1: approximately a linear system $O'(t) = \mathcal{L}O + g(t)$

Univariate

State dependence is ignored

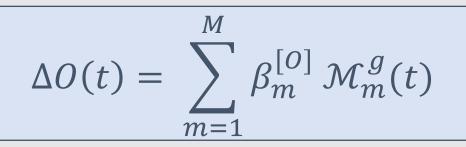
MULTIVARIATE METHODS

A: Multivariate Estimation of ECS

$$\overrightarrow{\Delta Y} = A \, \overrightarrow{\Delta X} + \vec{F}$$

[Bastiaansen et al, 2021]

B: Projections of Climate Feedbacks



[Bastiaansen et al, in progress]

- ☺ More accurate long-term estimates
- Better view on *how* the climate will be different