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Current work

•Postdoc @ Utrecht University 
(with Anna von der Heydt & Henk Dijkstra) 

•Within H2020 project TiPES: Tipping Points in the Earth System

•Work on Climate Sensitivity:

If we increase the atmospheric CO2 concentration, 
how much warmer does the Earth get?



Climate response and sensivitity metrics

Climate response is the change (response) in an observable due to 
increase in forcing

Two common metrics:
• Equilibrium Climate Sensitivity: change in equilibrium temperature 

due to (instantaenous) doubling of atmospheric CO2

• Transient Climate Response: change in temperature after 100 years 
with 1% CO2 increase per year (until doubling)



Equilibrium Climate Sensitivity

•Derived from dedicated experiments with climate models
• Start from equilibrium with pre-industrial levels of CO2
• Instantaneous increase in CO2
• Monitor change in observables compared to a control run

•However: equilibrating climate models takes very, very long

•Need for techniques to estimate equilibrium temperature

•Mathematical context: 𝑦! = 𝑓(𝑦; 𝜇)



Idea behind warming estimation techniques

Warming is due to net positive radiative imbalance

𝑁 = 𝑁!",↓ − 𝑁!",↑ −𝑁&",↑

When 𝑁 = 0 no more warming: 
à equilibrium warming 𝛥𝑇∗ = 𝑇∗ − 𝑇(

incoming sunlight reflected sunlight Planck radiation



Basic idea of Gregory method
Express imbalance as function of system state

𝑁(𝑡) = 𝑁(𝑦(𝑡))
Close to equilibrium 𝑦∗, Taylor expansion gives approximation

𝑁(𝑡) = 𝑁 𝑦∗ + (
" ∈ ℱ

𝜕𝑁
𝜕𝑦"

𝑦∗ 𝑦" 𝑡 − 𝑦"∗

Close to equilibrium, state variables 𝑦" 𝑡 = 𝑦" 𝑇 𝑡
Thus, another Taylor expansion yields

𝑁 𝑡 =
𝜕𝑁
𝜕𝑇 + (

" ∈ℱ

𝜕𝑁
𝜕𝑦"

𝜕𝑦"
𝜕𝑇 𝑇 𝑡 − 𝑇∗

Rewriting 𝑇 = 𝑇% + ∆𝑇 gives:
𝑁(𝑡) = 𝑎 ∆𝑇(𝑡) − 𝑎 ∆𝑇∗

Linear regression on data:
𝑁(𝑡) = 𝑎 ∆𝑇(𝑡) + 𝑓 → ∆𝑇∗&'(= − 𝑎)* 𝑓

[Gregory et al (2004)]



Gregory Plot for CESM 1.0.4

Data from LongRunMIP; [Rugenstein et al (2019)]
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Gregory Plot for CESM 1.0.4

Data from LongRunMIP; [Rugenstein et al (2019)]

à Gregory plots are non-linear!

𝑁



Step back: dynamical system point of view

𝑦) = 𝑓(𝑦)
Close	to	equilibrium:
∆𝑦) = 𝐷𝑓(𝑦∗) ∆𝑦 + 𝐹

Solutions sum of exponentials

∆𝑦 𝑡 − ∆𝑦∗= >
*+,

-

𝑐*𝑣*𝑒./

(𝑣! eigenvectors, λ! eigenvalues of 𝐴)
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This is not
We need as many 

observables as relevant 
eigenmodes

𝑦! 𝑡 = 𝑦!(𝑇 𝑡 , … )



The problem with classical method

In	linear	regime	of	decay	to	equilibrium:

𝑁 𝑡 − 𝑁∗ =?
&

𝛽&
' 𝑒(! )

∆𝑇 𝑡 − ∆𝑇∗=?
&

𝛽&
* 𝑒(! )

If only one eigenmode present:

𝑁 𝑡 − 𝑁∗ = D𝛽+
'

𝛽+
[*] ∆𝑇 𝑡 − ∆𝑇∗

Since 𝑁∗ = 0 this leads to Gregory method:
𝑁 𝑡 = 𝑎 ∆𝑇 𝑡 + 𝑓



Idea:
A Multi-Component Linear Regression (MC-LR):

𝑌 = 𝐴 𝑋 + 𝐹à 𝑋∗01/ = −𝐴2, 𝐹

Example:

𝑁
∆𝛼′
∆𝜀′

= A
∆T
∆α
∆ε

+ 𝐹

𝛼 : effective top-of-atmosphere short-wave albedo

𝛼 = *𝑁"#,↑
𝑁"#,↓

𝜀 : effective top-of-atmosphere long-wave emissivity

𝜀 = -𝑁'#,↑
𝑇(

𝑌:
𝑀 observables that 

tend to 0 in equilibrium

𝑋:
𝑀 observables that are 

estimated in equilibrium



Toy system – Model Equations

𝐶3
𝑑𝑇
𝑑𝑡

= 𝑄( 1 − 𝛼 − 𝜀 𝜎 𝑇4 + 𝜇 + 𝜈𝜉 𝑡 ;

𝑑𝛼
𝑑𝑡

= −𝛿5 𝛼 − 𝛼( 𝑇 ;

𝑑𝜀
𝑑𝑡
= − 𝛿6 𝜀 − 𝜀( 𝑇 .

incoming sunlight

reflected sunlight

Planck radiation

effect of CO2
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Toy system – Results



Testing on LongRunMIP data

• Models run to ‘equilibrium’ (practice: runs of at least 1,000 years)
• Work with ‘abrupt-4xCO2’ forcing experiments

Experiment
• Run estimation technique with data up to time 𝑡
• Compare with ‘equilibrium value’
• Determine effectiveness of techniques for time frame





Results for CESM 1.0.4



Measure for effectiveness
• Denote ‘equilibrium’ warming by ∆𝑇∗
• Measure for maximum of relative error one ought to expect

relative error 𝑡 ≔ max
1 7/

∆𝑇∗01/(𝑠) − ∆𝑇∗
∆𝑇∗01/(𝑠)



Results for CESM 1.0.4





Conclusions

•Multi-component regression 𝑌 = 𝐴 𝑋 + 𝐹 yields better results
• especially for t > 150 years
• depends on model characteristics

•Multivariate estimate 𝑋∗./) = −𝐴0+𝐹 contains more than temperature
• useful for estimating projections of climate subsystems

•Potential improvements:
• more curated observables
• dedicated ensemble of simulations



[Bastiaansen et al (2021)]

Multi-Component	Linear	Regression

𝑌 = 𝐴 𝑋 + 𝐹

leads to 
Multivariate Estimate

𝑋∗./) = −𝐴0+𝐹



[ Bastiaansen, Dijkstra, Von der Heydt (GRL, 2021). DOI: doi.org/10.1029/2020GL091090 ]

https://doi.org/10.1029/2020GL091090




ADDITIONAL SLIDES







Toy model: Fitted eigenvalues



MPI-ESM 1.1



GISS-E2-R


