

Climate Feedbacks

Robbin Bastiaansen

Summary

Climate Feedbacks

Warming leads to change of internal process of climate system

- * Planck radiation feedback
- Surface Albedo feedback
- Lapse Rate feedback
- Water Vapour feedback
- Cloud Formation feedback

Problem:

Classic methods relate everything linearly to global warming

Objective Misses state-dependency and changes in feedback strength

Solution:

Decomposition of feedbacks as observables over time scales

Captures temporal evolution & state-dependency of feedbacks

Climate Feedback Theory

Classic treatment of climate feedbacks (1)

Warming is due to net positive radiative imbalance

When $\Delta N = 0$ no more warming:

 \rightarrow equilibrium warming $\Delta T_* = T_* - T_0$

Classic treatment of climate feedbacks (2)

Express imbalance as function of system state

$$\Delta N(t) = \Delta N(y(t), \mu(t))$$

Near equilibrium y_* (with $\mu = \mu_*$) a Taylor expansion gives

Implicit assumption: relevant climate dynamics are approximately a linear system

Classic treatment of climate feedbacks (3)

Climate Response ΔR is sum of *feedback contributions*:

$$\Delta R(t) = \sum_{j \in \mathcal{F}} \Delta R_j(t)$$

${\mathcal F}$ is set of Climate Feedbacks:

- * Planck radiation feedback
- Surface Albedo feedback
- Lapse Rate feedback
- Water Vapour feedback
- Cloud Formation feedback

$$\Delta R_j(t) \coloneqq \frac{\partial \Delta N}{\partial y_j} \Big|_* \Delta y_j(t)$$

Classic: define feedback strength λ_j via

$$\Delta R_j(t) = \lambda_j \, \Delta T(t)$$

Implicit assumption: relevant climate dynamics play on approximately one mode

The problem with the classic treatment (1)

The problem with the classic treatment (2)

Evolution of Observables

Linear Response Theory (& Koopman Theory):

$$\frac{dO}{dt} = \mathcal{L}O + g(t)$$

$$\Delta O(t) = \left(G^{[O]} * g \right)(t) = \int_0^t G^{[O]}(s) g(t-s) \, ds$$

Approximation of Green Function:

$$G^{[O]}(t) = \sum_{m=1}^{M} \beta_m^{[O]} e^{-t/\tau_m}$$

So:

New feedback metrics

Application to CESM2 runs

Application to CESM2's abrupt4xCO2 run in CMIP6 (1)

Procedure:

Radiative kernel: CESM-CAM5 from [Pendergrass et al, 2017]

- 1. Compute $\langle \Delta R_j \rangle(t) = \langle \frac{\partial \Delta N}{\partial y_j} (\vec{y}_*; \mu_*) \Delta y_j \rangle(t)$ 2. Fit $\langle \Delta R_j \rangle(t) = \sum_{n=1}^M \beta_n^{[R_j]} \mathcal{M}_n^g(t)$ (and similar for ΔT and N)
- 3. Compute feedback strengths

Application to CESM2's abrupt4xCO2 run in CMIP6 (2)

Application to CESM2's abrupt4xCO2 run in CMIP6 (3)

	Mode 1	Mode 2	Mode 3	Equilibrium
$ au_m$	4.5 (± 0.1)	$127 (\pm 3.8)$	889 (± 50)	-
λ_{m}	$-1.28~(\pm 0.08)$	$-0.38~(\pm 0.03)$	$-0.37~(\pm 0.02)$	$-0.66 (\pm 0.03)$
Planck (LW)	$-3.16~(\pm 0.02)$	$-3.24~(\pm 0.02)$	$-3.23~(\pm 0.01)$	$-3.21 \ (\pm 0.05)$
Lapse Rate (LW)	$-0.73~(\pm 0.03)$	$-0.50~(\pm 0.03)$	$-0.32~(\pm 0.03)$	$-0.50 \ (\pm \ 0.01)$
Surface Albedo (SW)	$+0.62 (\pm 0.04)$	$+0.56 (\pm 0.02)$	$+0.08 (\pm 0.10)$	$+0.39 (\pm 0.01)$
Water Vapour (LW)	$+0.97~(\pm 0.03)$	$+1.38 (\pm 0.02)$	$+2.71 (\pm 0.01)$	$+1.79 (\pm 0.04)$
Water Vapour (SW)	$+0.21~(\pm 0.09)$	$+0.26 (\pm 0.05)$	$+0.43 (\pm 0.02)$	+0.31 (± 0.01)
Clouds $(SW + LW)$	$+0.27 (\pm 0.36)$	$+1.19 (\pm 0.02)$	$+1.43 (\pm 0.01)$	$+1.00 (\pm 0.03)$
sum	$-1.82 (\pm 0.37)$	$-0.36~(\pm 0.07)$	$+1.09 (\pm 0.11)$	$-0.22 \ (\pm 0.08)$
missing	+0.54 (± 0.38)	$-0.02 (\pm 0.08)$	$-1.46 (\pm 0.11)$	$-0.43 (\pm 0.08)$

Application to CESM2's abrupt4xCO2 run in CMIP6 (3)

Spatial Response – Equilibrium Estimates

$\Delta O(t) = \sum_{m=1}^{M} \beta_m^{[O]} \mathcal{M}_m^g(t)$ only this gets changed!

Linear Response Theory – CAVEATS:

- i. forcings & responses should be 'small enough'
- ii. should look at ensemble means

Projections for CESM2's 1pctCO2 experiment

Instantaneous feedback strengths for abrupt4xCO2 & 1%CO2

Spatial projections for 1%CO2 experiment

TEMPERATURE

Spatial projections for 1%CO2 experiment

SURFACE ALBEDO FEEDBACK CONTRIBUTION

Spatial projections for 1%CO2 experiment

WATER VAPOUR (LW) FEEDBACK CONTRIBUTION

Projections of Climate Feedbacks

SUMMARY OF METHOD

$$\mathcal{M}_m^g(t) = \int_0^t e^{-s/\tau_m} g(t-s) ds$$

- Allows dissecting feedback contributions over time and space
 - Feedback strength per mode
 - Feedback missing on long time scale?
- Projections for other forcings seem possible
 - Tests presented are promising

Paper out in Geophysical Research Letters:

Projections of the transient state-dependency of climate feedbacks

Robbin Bastiaansen, Henk A. Dijkstra, Anna S. von der Heydt

