

Projections of the

Climate Feedbacks

Robbin Bastiaansen

Summary

Climate Feedbacks

Warming leads to change of internal process of climate system

- * Planck radiation feedback
- Surface Albedo feedback
- Lapse Rate feedback
- Water Vapour feedback
- Cloud Formation feedback

Problem:

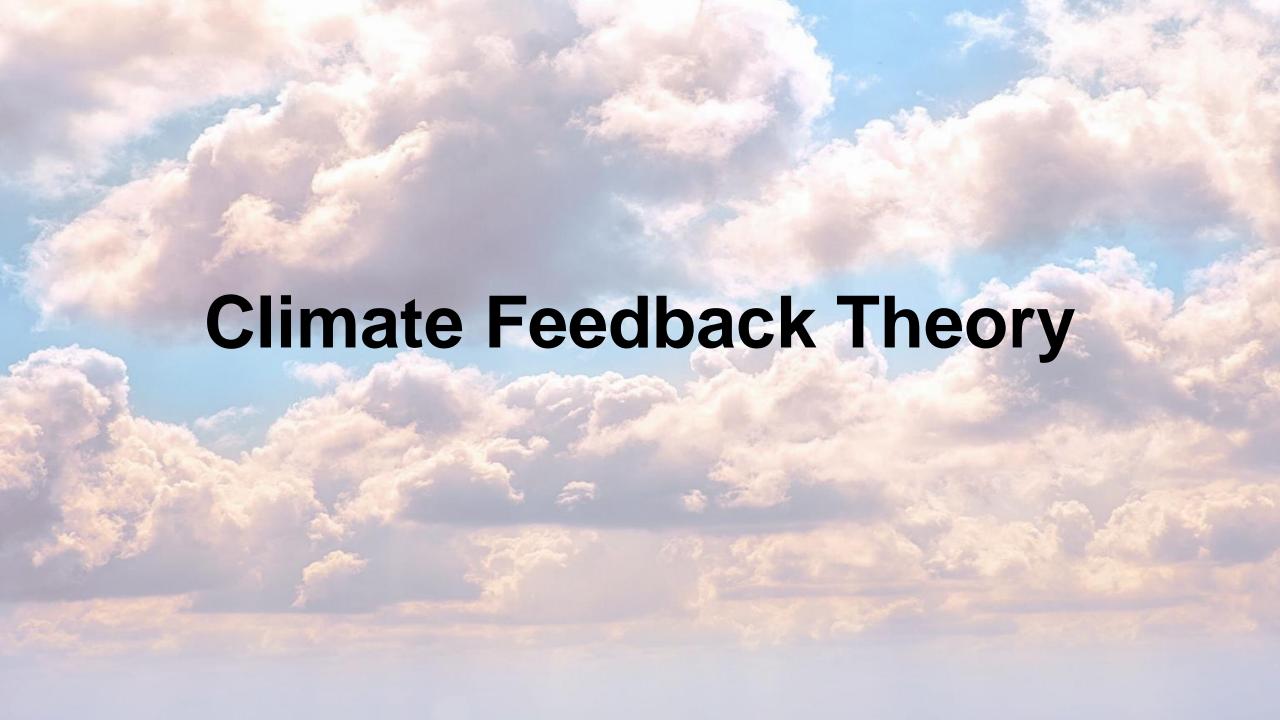
Classic methods relate everything linearly to global warming

Misses state-dependency and changes in feedback strength

Solution:

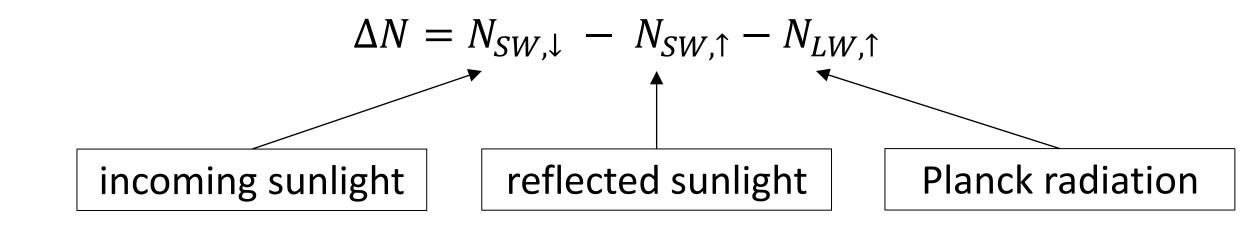
Decomposition of feedbacks as observables over time scales

Captures temporal evolution & state-dependency of feedbacks



Classic treatment of climate feedbacks (1)

Warming is due to net positive radiative imbalance



When $\Delta N = 0$ no more warming:

 \rightarrow equilibrium warming $\Delta T_* = T_* - T_0$

Classic treatment of climate feedbacks (2)

Express imbalance as function of system state

$$\Delta N(t) = \Delta \widecheck{N}(y(t), \mu(t))$$

Near equilibrium y_* (with $\mu = \mu_*$) a Taylor expansion gives

$$\Delta N(t) = \Delta \widecheck{N}(y_*, \mu_*) + \frac{\partial \Delta \widecheck{N}}{\partial \mu} \left|_{*} \Delta \mu(t) + \frac{\partial \Delta \widecheck{N}}{\partial y} \right|_{*} \Delta y(t) + h.o.t.$$
Equals Zero Radiative Forcing Climate Response Assumed to be small
$$\Delta N(t) = F(t) + \Delta R(t)$$

Implicit assumption: relevant climate dynamics are approximately a linear system

Classic treatment of climate feedbacks (3)

Climate Response ΔR is sum of *feedback contributions*:

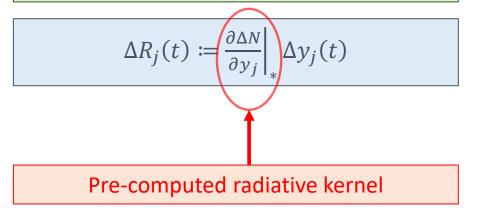
$$\Delta R(t) = \sum_{j \in \mathcal{F}} \Delta R_j(t)$$

Classic: define feedback strength λ_j via

$$\Delta R_j(t) = \lambda_j \, \Delta T(t)$$

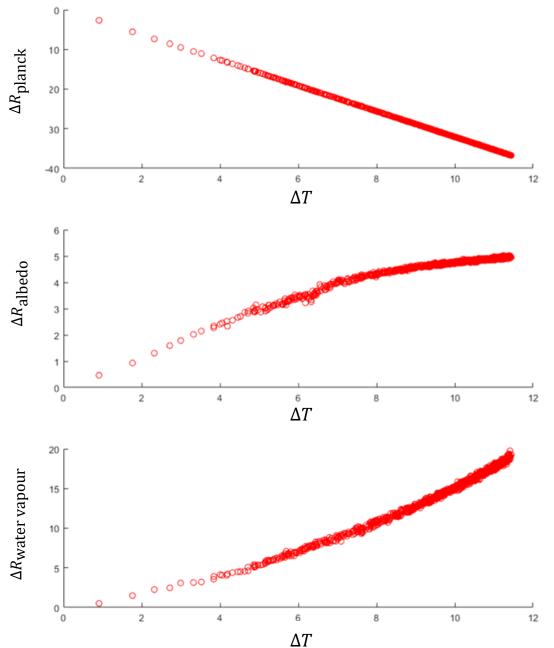
\mathcal{F} is set of **Climate Feedbacks:**

- * Planck radiation feedback
- Surface Albedo feedback
- Lapse Rate feedback
- Water Vapour feedback
- Cloud Formation feedback

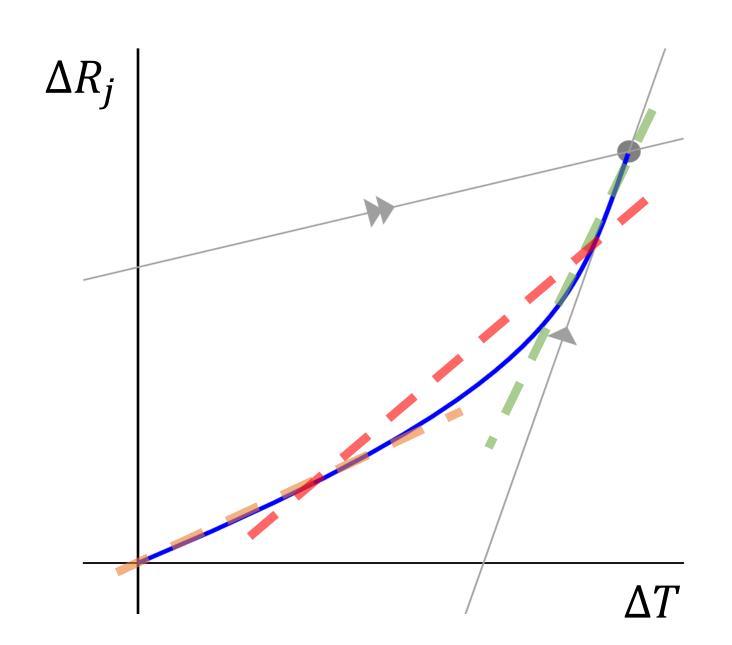


Implicit assumption: relevant climate dynamics play on approximately one mode

The problem with the classic treatment (1)



The problem with the classic treatment (2)



Evolution of Observables

Linear Response Theory (& Koopman Theory):

$$\frac{dO}{dt} = \mathcal{L}O + g(t)$$

$$\Delta O(t) = (G^{[O]} * g)(t) = \int_0^t G^{[O]}(s) g(t - s) ds$$

Approximation of Green Function:

$$G^{[O]}(t) = \sum_{m=1}^{M} \beta_m^{[O]} e^{-t/\tau_m}$$

So:

$$\Delta O(t) = \sum_{m=1}^{M} \beta_m^{[O]} \mathcal{M}_m^g(t)$$

 $\mathcal{M}_m^g(t) = \int_0^t e^{-s/\tau_m} g(t-s) ds$

all / observable dependency

forcing (and time)
dependency

New feedback metrics

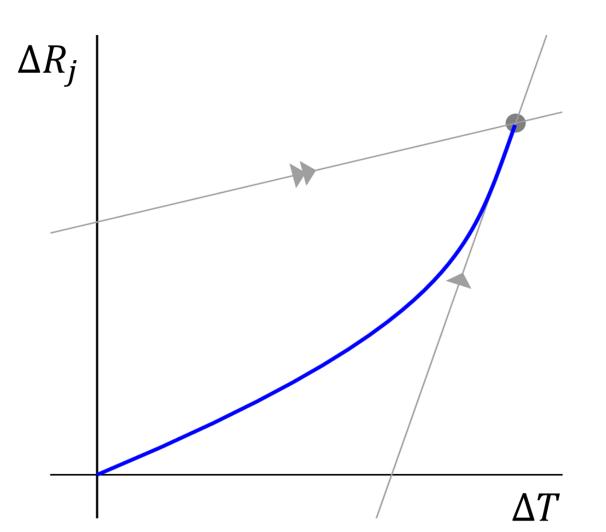
Feedback strength per mode:

$$\lambda_j^m \coloneqq rac{eta_m^{[R_j]}}{eta_m^{[T]}}$$

 $\Delta O(t) = \sum_{m=1}^{M} \beta_m^{[O]} \, \mathcal{M}_m^g(t)$

Instantaneous feedback strength:

$$\lambda_j^{inst}(t) \coloneqq \frac{\frac{d}{dt} \Delta R_j(t)}{\frac{d}{dt} \Delta T(t)}$$

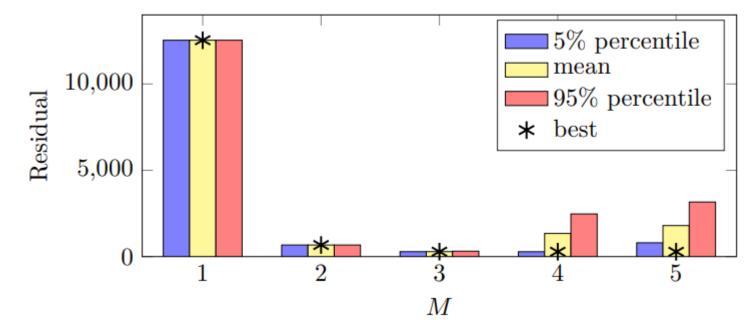


Application to CESM2's abrupt4xCO2 run in CMIP6 (1)

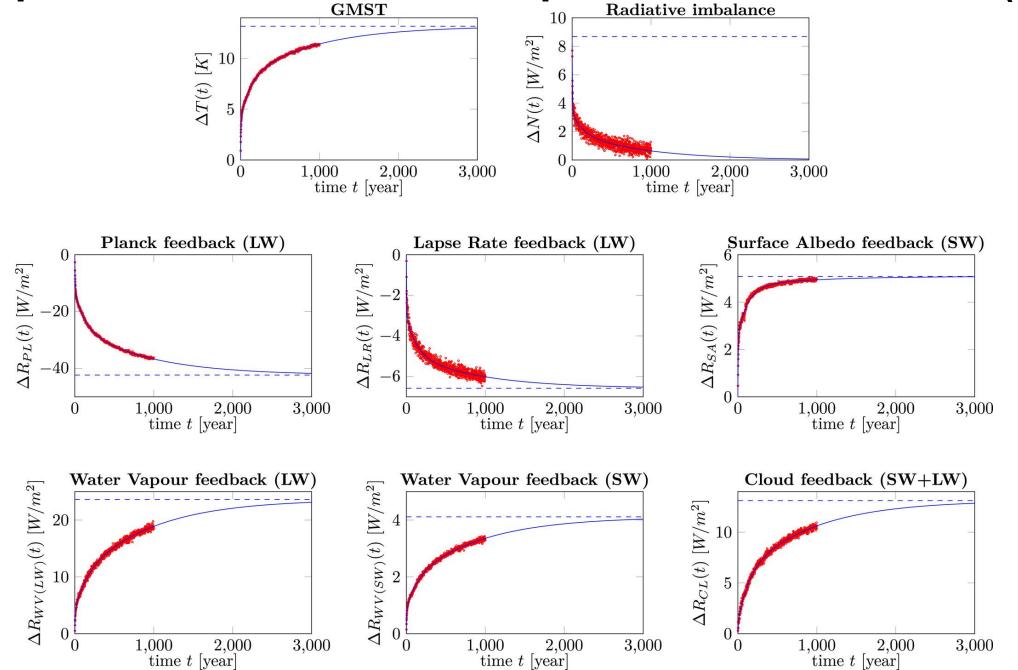
Procedure:

Radiative kernel: CESM-CAM5 from [Pendergrass et al, 2017]

- 1. Compute $\langle \Delta R_j \rangle(t) = \left\langle \frac{\partial \Delta N}{\partial y_j} (\vec{y}_*; \mu_*) \Delta y_j \right\rangle(t)$
- 2. Fit $\langle \Delta R_j \rangle$ (t) = $\sum_{n=1}^{M} \beta_n^{[R_j]} \mathcal{M}_n^g(t)$ (and similar for ΔT and N)
- 3. Compute feedback strengths



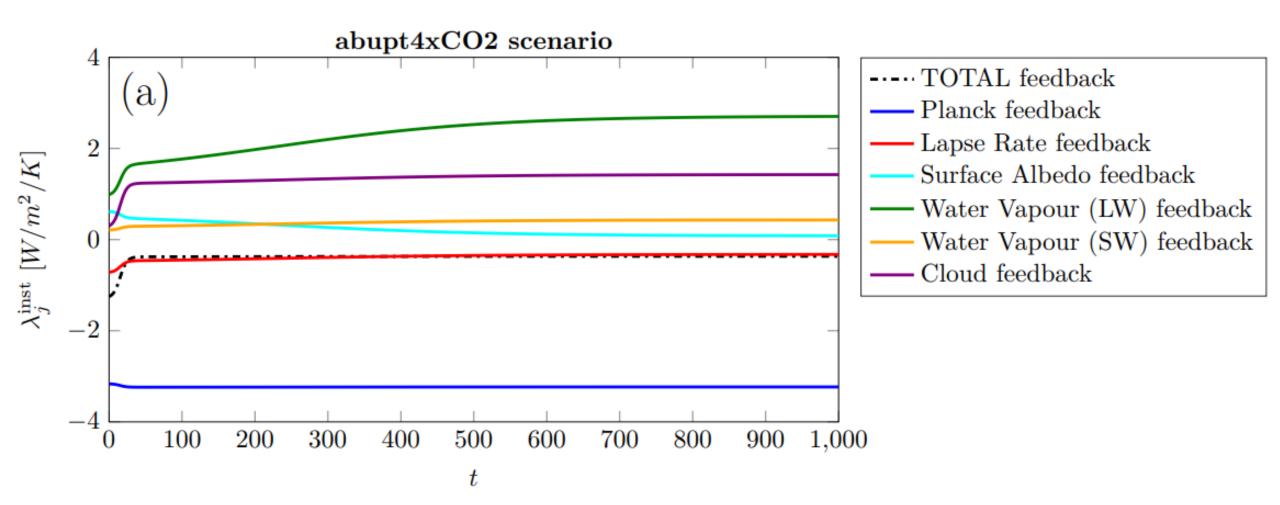
Application to CESM2's abrupt4xCO2 run in CMIP6 (2)



Application to CESM2's abrupt4xCO2 run in CMIP6 (3)

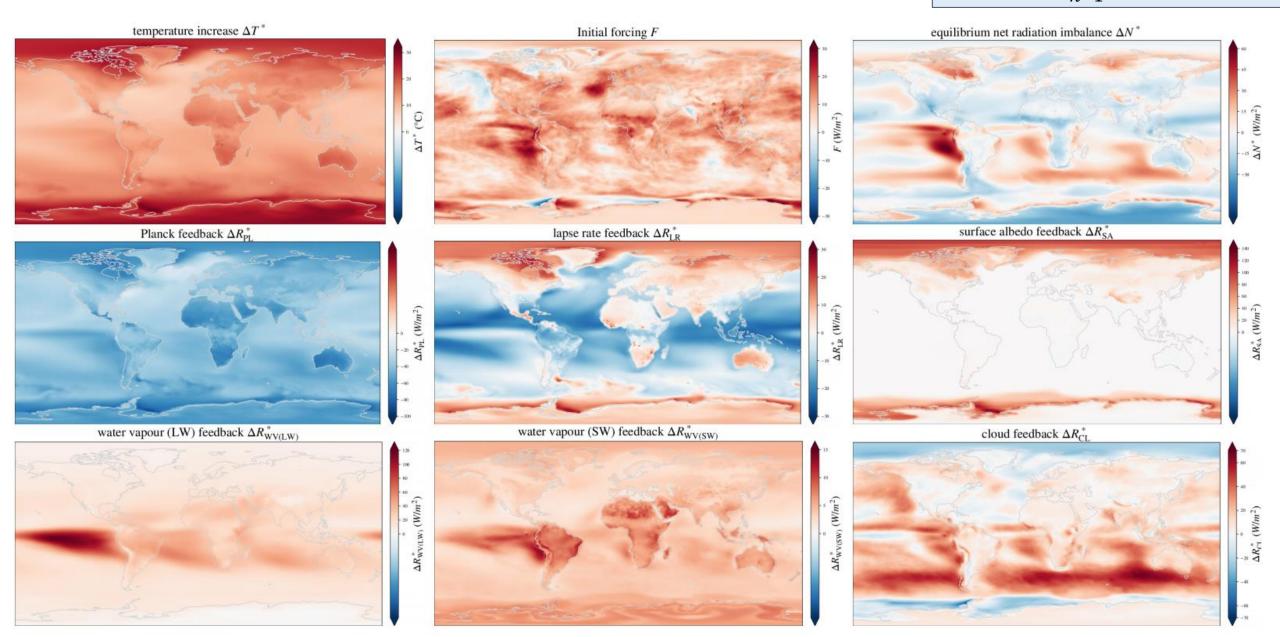
	Mode 1	Mode 2	Mode 3	Equilibrium
$ au_m$	$4.5~(\pm~0.1)$	127 (± 3.8)	889 (± 50)	
λ_m	$-1.28 \ (\pm \ 0.08)$	$-0.38 \ (\pm \ 0.03)$	$-0.37 (\pm 0.02)$	$-0.66 (\pm 0.03)$
Planck (LW)	$-3.16 (\pm 0.02)$	$-3.24 (\pm 0.02)$	$-3.23 (\pm 0.01)$	` '
Lapse Rate (LW)	$-0.73 (\pm 0.03)$	$-0.50 (\pm 0.03)$	$-0.32 (\pm 0.03)$	
Surface Albedo (SW)	$+0.62 (\pm 0.04)$	$+0.56 \ (\pm \ 0.02)$	$+0.08 (\pm 0.10)$	$+0.39 (\pm 0.01)$
Water Vapour (LW)	$+0.97 (\pm 0.03)$	$+1.38 \ (\pm \ 0.02)$	$+2.71 (\pm 0.01)$	$+1.79 (\pm 0.04)$
Water Vapour (SW)	$+0.21 (\pm 0.09)$	$+0.26 \ (\pm \ 0.05)$	$+0.43 (\pm 0.02)$	$+0.31 (\pm 0.01)$
Clouds $(SW + LW)$	$+0.27 (\pm 0.36)$	$+1.19 \ (\pm \ 0.02)$	$+1.43 \ (\pm \ 0.01)$	$+1.00 (\pm 0.03)$
sum	$-1.82 (\pm 0.37)$	$-0.36~(\pm~0.07)$	$+1.09 (\pm 0.11)$	$\ -0.22 \ (\pm \ 0.08)$
residue	$+0.54 (\pm 0.38)$	$-0.02 (\pm 0.08)$	$-1.46 (\pm 0.11)$	$\parallel -0.43 \ (\pm \ 0.08)$

Application to CESM2's abrupt4xCO2 run in CMIP6 (3)



Spatial Response – Equilibrium Estimates

$$\Delta R_j(\mathbf{x}, \mathbf{t}) = \sum_{n=1}^{M} \beta_n^{[R_j]}(\mathbf{x}) \, \mathcal{M}_n^g(t)$$



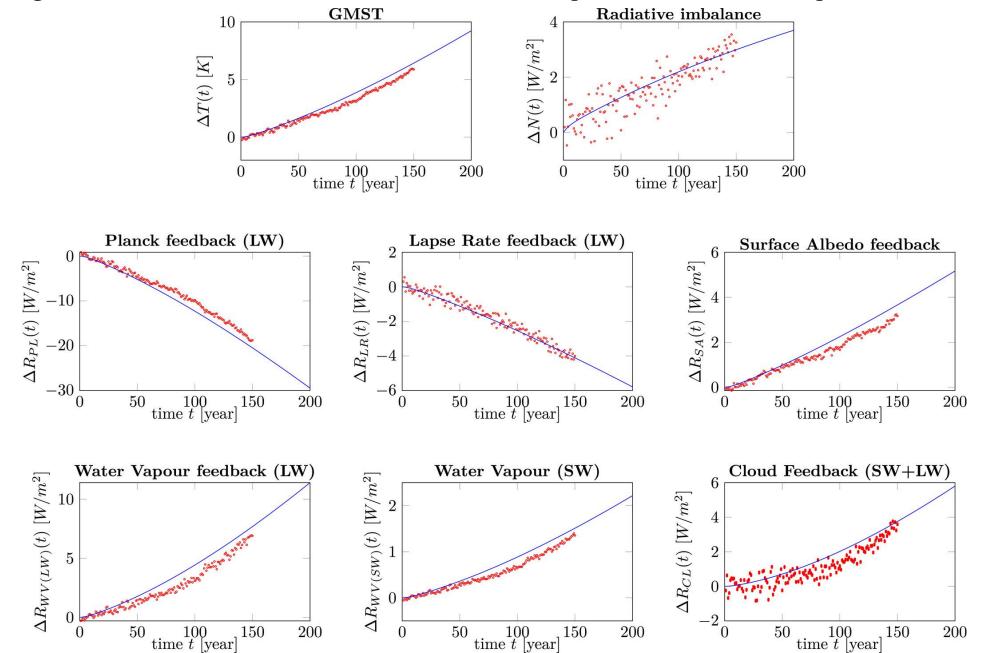
Projections for other forcings

$$\Delta O(t) = \sum_{m=1}^{M} \beta_m^{[O]} \, \mathcal{M}_m^g(t)$$
only this gets changed!

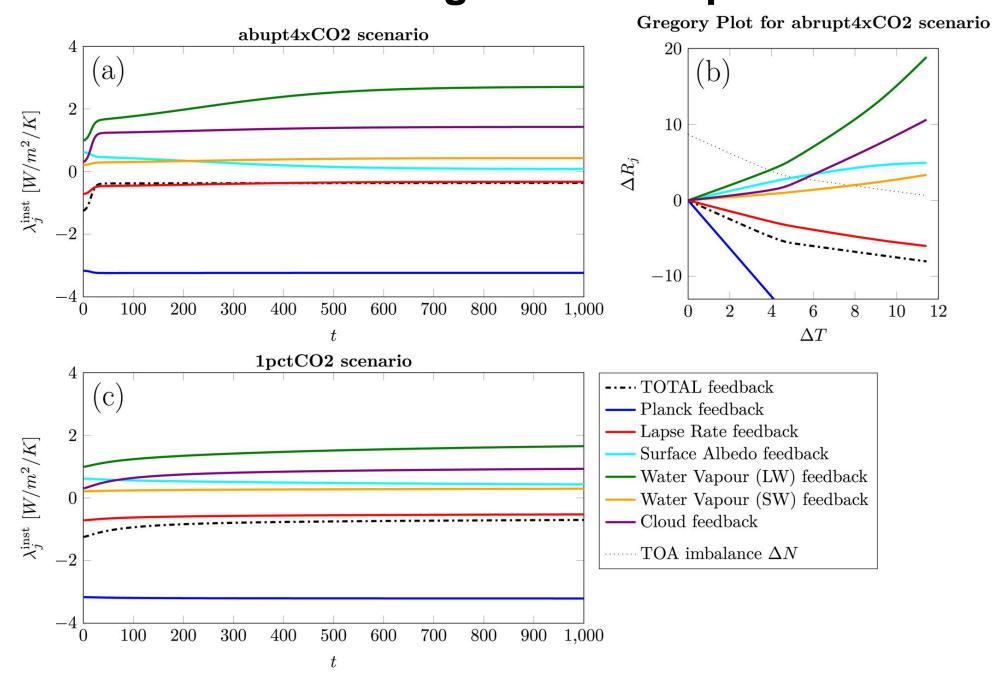
Linear Response Theory – CAVEATS:

- i. forcings & responses should be 'small enough'
- ii. should look at ensemble means

Projections for CESM2's 1pctCO2 experiment

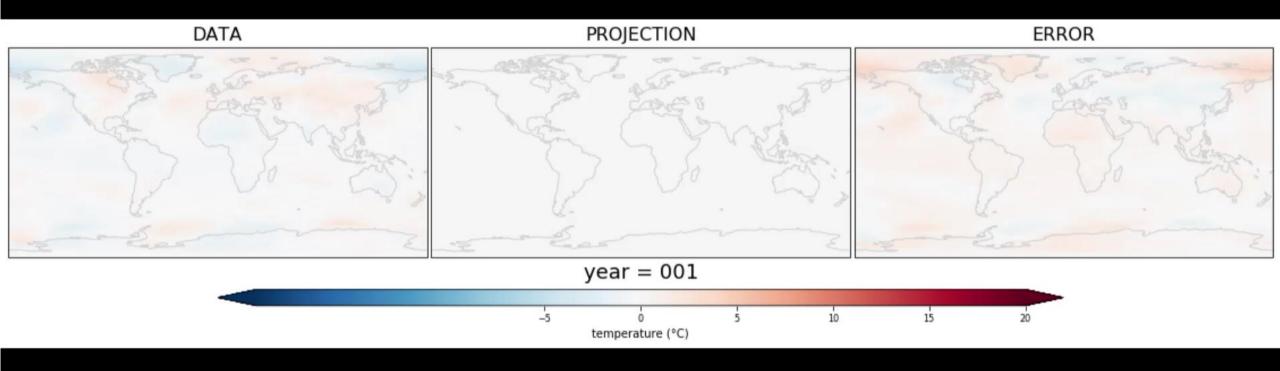


Instantaneous feedback strengths for abrupt4xCO2 & 1%CO2



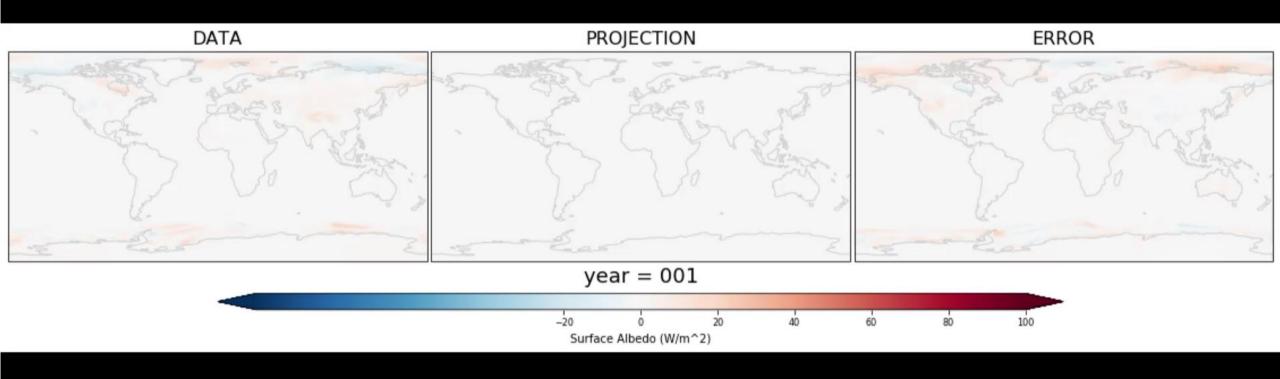
Spatial projections for 1%CO2 experiment

TEMPERATURE



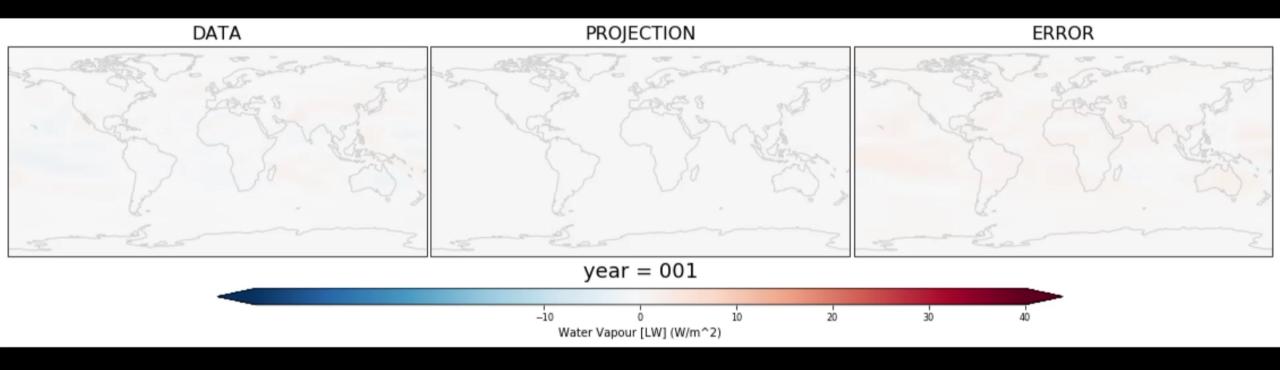
Spatial projections for 1%CO2 experiment

SURFACE ALBEDO FEEDBACK CONTRIBUTION



Spatial projections for 1%CO2 experiment

WATER VAPOUR (LW) FEEDBACK CONTRIBUTION



Projections of Climate Feedbacks

SUMMARY OF METHOD

Evolution of observable

$$\Delta O(t) = \sum_{m=1}^{M} \beta_m^{[O]} \, \mathcal{M}_m^g(t)$$

$$\mathcal{M}_m^g(t) = \int_0^t e^{-s/\tau_m} g(t-s) ds$$

- Allows dissecting feedback contributions over time and space
 - Feedback strength per mode
 - Feedback missing on long time scale?
- Projections for other forcings seem possible
 - Tests presented are promising

Paper out in Geophysical Research Letters:

Projections of the transient state-dependency of climate feedbacks

