Climate change in the Anthropocene linear and nonlinear climate response

Robbin Bastiaansen MI TALK - 17 November 2022

Human influence has warmed the climate at a rate that is unprecedented in at least the last 2000 years

Changes in global surface temperature relative to 1850–1900

(a) Change in global surface temperature (decadal average) as **reconstructed** (1–2000) and **observed** (1850–2020)

(b) Change in global surface temperature (annual average) as **observed** and simulated using human & natural and only natural factors (both 1850–2020)

Today's talk

1. Future projections – *linear* response

2. Limitations of linear theory – *nonlinear* response

3. Beyond ODE theory – *nonlinear spatial* response

Part 1. Future climate projections

Future climate projections

Often, all other observables are assumed to be linearly related to the global mean surface temperature

Most used Climate Sensitivity Metrics

Equilibrium Climate Sensitivity (ECS)

change in equilibrium temperature due to (instantaneous) doubling of CO2

Transient Climate Response (TCR)

change in temperature after 100 years with 1% CO2 increase per year (until doubling)

Some Details

Dedicated experiments with climate models

Start from equilibrium with pre-industrial levels of CO2

Change compared to control run

Mathematical Context

$$\frac{dy}{dt} = f(y; \mu(t))$$

 $y(t) \in \Omega$: state variable $\mu(t) \in \mathbb{R}$: forcing parameter

Evolution of Observables

Observables $\hat{O}: \Omega \to \mathbb{R}^N$ $O(t) \coloneqq \hat{O}(y(t))$

Evolution
$$\frac{dO}{dt} = \mathcal{L}O + g(t)$$

$$\Delta O(t) = \left(G^{[O]} * g \right)(t) = \int_0^t G^{[O]}(s) g(t-s) ds$$

Green function

Evolution of Observables

Observables $\hat{O}: \Omega \to \mathbb{R}^N$ $O(t) \coloneqq \hat{O}(y(t))$

Evolution
$$\frac{dO}{dt} = \mathcal{L}O + g(t)$$

$$\Delta O(t) = \left(G^{[O]} * g \right)(t) = \int_0^t G^{[O]}(s) g(t-s) \, ds$$

Approximation of Green Function:

$$G^{[O]}(t) = \sum_{m=1}^{M} \beta_m^{[O]} e^{-t/\tau_m}$$

So:

$$\Delta O(t) = \sum_{m=1}^{M} \beta_m^{[O]} \mathcal{M}_m^g(t) \qquad \qquad \mathcal{M}_m^g(t) = \int_0^t e^{-s/\tau_m} g(t-s) ds$$

all all all forcing (and time)
dependency dependency

Regress data to

$$\Delta N(t) = \mathbf{F} + \boldsymbol{\lambda} \, \Delta T(t)$$

Since $\Delta N_* = 0$ in equilibrium, ECS estimation is

$$\Delta T_*^{est} = -\lambda^{-1} \mathbf{F}$$

Regress data to

$$\Delta N(t) = \mathbf{F} + \boldsymbol{\lambda} \, \Delta T(t)$$

Since $\Delta N_* = 0$ in equilibrium, ECS estimation is

$$\Delta T_*^{est} = -\lambda^{-1} \mathbf{F}$$

$$\Delta N(t) = \mathbf{F} + \boldsymbol{\lambda} \, \Delta T(t)$$

Since $\Delta N_* = 0$ in equilibrium, ECS estimation is

$$\Delta T_*^{est} = -\lambda^{-1} \mathbf{F}$$

$$\Delta N(t) = \mathbf{F} + \boldsymbol{\lambda} \, \Delta T(t)$$

Since $\Delta N_* = 0$ in equilibrium, ECS estimation is

$$\Delta T_*^{est} = -\lambda^{-1} \mathbf{F}$$

Regress data to

$$\Delta N(t) = \mathbf{F} + \boldsymbol{\lambda} \, \Delta T(t)$$

Since $\Delta N_* = 0$ in equilibrium, ECS estimation is

$$\Delta T_*^{est} = -\lambda^{-1} \mathbf{F}$$

New Multicomponent Linear Regression Method

New Multicomponent Linear Regression Method

$\Delta O(t) = \sum_{m=1}^{M} \beta_m^{[O]} \mathcal{M}_m^g(t)$ only this gets changed!

Linear Response Theory – CAVEATS:

- i. forcings & responses should be 'small enough'
- ii. should look at ensemble means

Projections for CESM2's 1pctCO2 experiment

[Bastiaansen, Dijkstra, Von der Heydt, 2021]

Spatial projections for 1%CO2 experiment

Spatial Response

$$\Delta O(\mathbf{x}, t) = \sum_{m=1}^{M} \beta_m^{[O]}(\mathbf{x}) \mathcal{M}_m^g(t)$$

[Bastiaansen, Dijkstra, Von der Heydt, 2021]

PART 2 LIMITATIONS **OF LINEAR** THEORY

Pitfalls and problems

[Bastiaansen, Ashwin, Von der Heydt, 2022, preprint]

Nonlinear Response

[Bastiaansen, Ashwin, Von der Heydt, 2022, preprint]

Nonlinear Response

(Data from CESM1.0.4 runs in LongRunMIP)

Bifurcations / Tipping Points

Tipping Points

IPCC AR6 (2021) : "a critical threshold beyond which a system reorganizes, often abruptly and/or irreversibly"

Mathematics

productivity

Tipping points \leftrightarrow Bifurcations $\frac{dy}{dt} = f(y, \mu)$

source: McKay et al, 2022

Part 3

Tipping in spatially extended systems

Examples of spatial patterning – regular patterns

mussel beds

savannas

melt ponds

drylands

Examples of spatial patterning – spatial interfaces

Part 3-A: Turing Patterns

Patterns in models

Add spatial transport: Reaction-Diffusion equations:

$$\frac{du}{dt} = f(u, v) + D_u \Delta u$$
$$\frac{dv}{dt} = g(u, v) + D_v \Delta v$$

environmental conditions

[Klausmeier, 1999]

[Rietkerk et al, 2002]

[Liu et al, 2013]

Behaviour of PDEs

Tipping of (Turing) patterns

Part 3-B: Coexistence States

Coexistence states in bifurcation diagram

Coexistence states

Front Dynamics

$$\frac{\partial y}{\partial t} = D \frac{\partial^2 y}{\partial x^2} + f(y;\mu)$$

Potential function $V(y; \mu)$: $\frac{\partial V}{\partial y}(y; \mu) = -f(y; \mu)$

Adding Spatial Heterogeneity

Fragmented Tipping

Part 3-C: Tipping in Spatially Extended Systems

"Bifurcation Diagram" for spatially extended systems

What if the system tips?

Do systems always behave like this? (a.k.a. the small print)

No.

 \rightarrow Such systems (again) behave like ODEs \leftarrow

But even in other systems terms & conditions apply: System-specific knowledge is required!

Summary

1. Projections for observables are possible using linear response theory.

2. But there are limitations, such as crossings of tipping points.

3. But tipping of spatially extended systems might be local and gradual.

