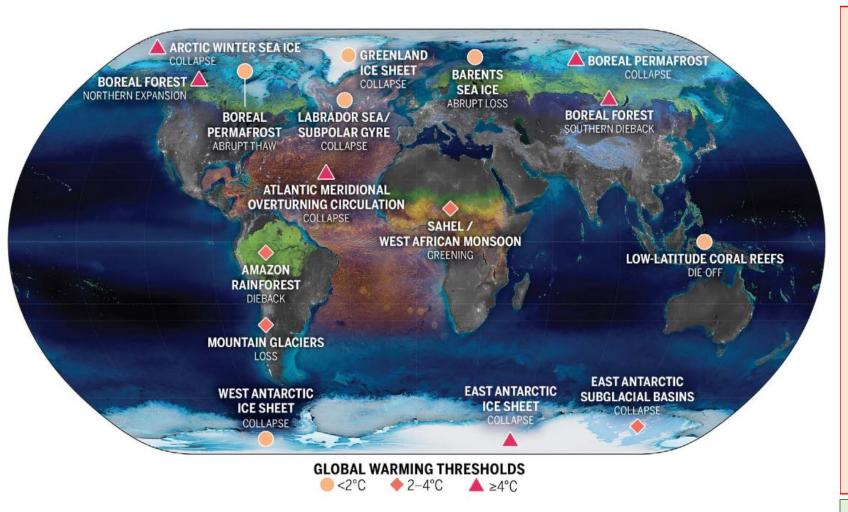


Tipping Points

IPCC AR6 (2021):

"a critical threshold beyond which a system reorganizes, often abruptly and/or irreversibly"



Mathematics

Tipping points ↔ Bifurcations

$$\frac{dy}{dt} = f(y, \mu)$$

$$\Rightarrow 0$$

$$-1$$

$$-1$$

$$-0.5$$

$$0$$

$$0.5$$

$$1$$

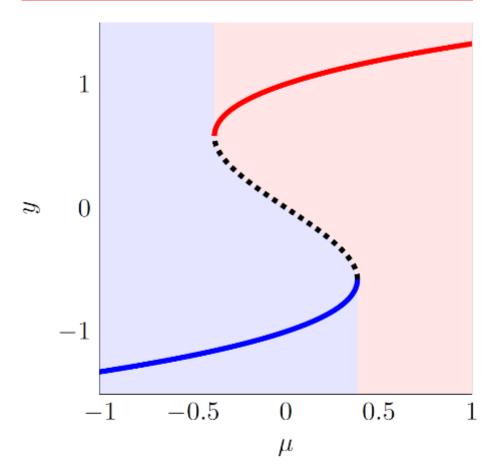
What about spatially extended systems?

[source: McKay et al, 2022]

Tipping in ODEs (1)

Canonical example:

$$\frac{dy}{dt} = y(1 - y^2) + \mu$$



Concrete example: Global Energy Balance Model

$$\frac{dT}{dt} = Q(1 - \alpha(T)) - \varepsilon \sigma_0 T^4 + \mu$$

Classic Literature

[Holling, 1973] [Noy-Meier, 1975] [May, 1977]

Tipping

[Ashwin et al, 2012]

Bifurcation-Tipping: Basin disappears

Noise-Tipping: Forced outside Basin

Rate-Tipping: (more complicated)

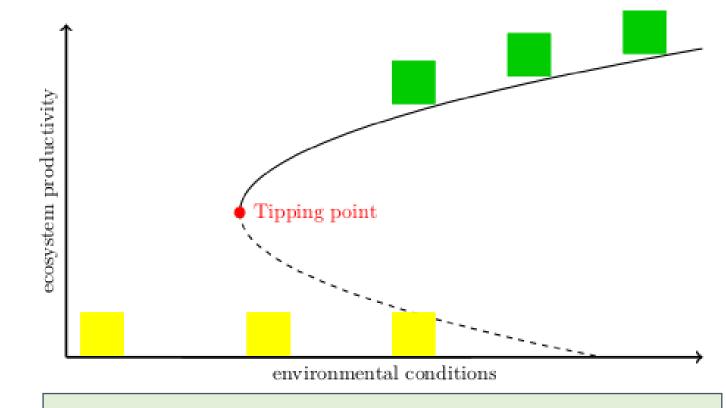
Tipping in ODEs (2)

Two components:

$$\begin{cases} \frac{du}{dt} = f(u, v) \\ \frac{dv}{dt} = g(u, v) \end{cases}$$

includes common models:

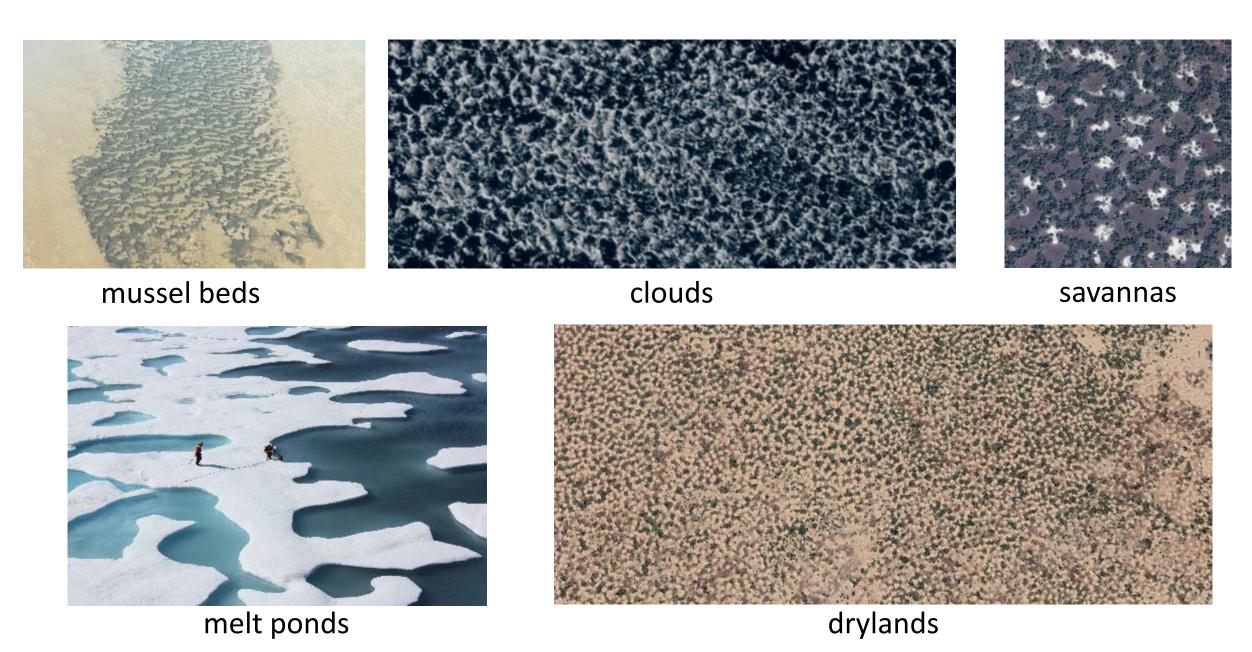
- Predator-Prey
- Activator-Inhibitor



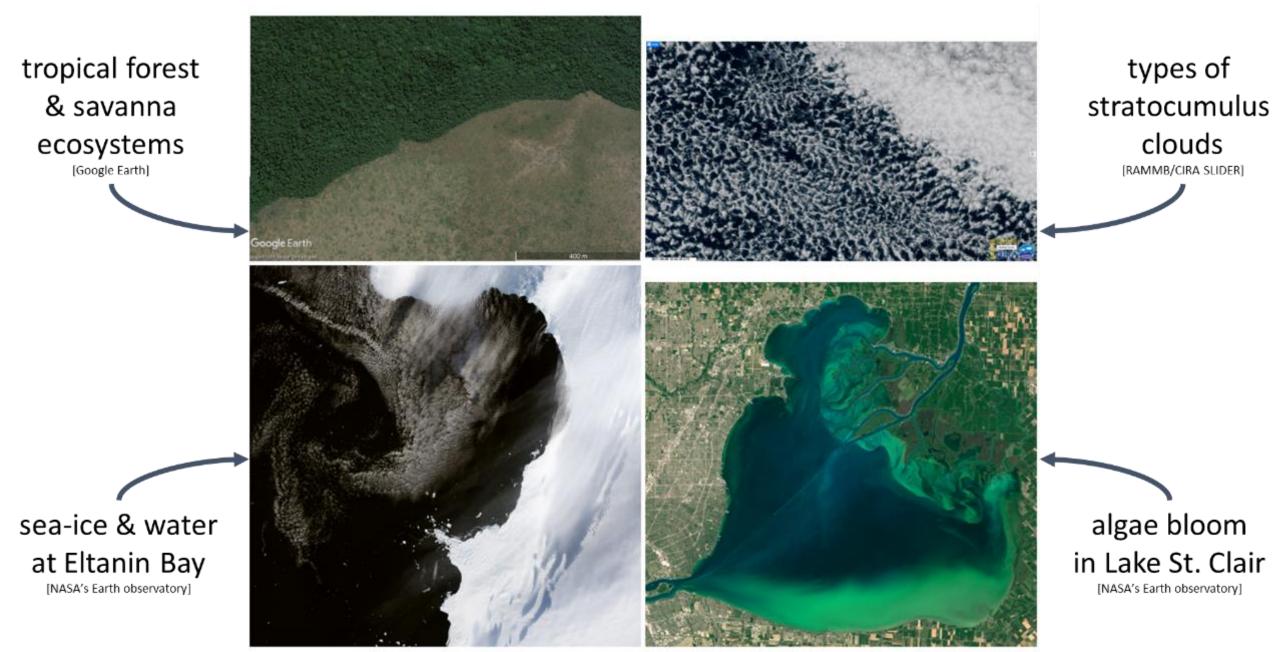
Examples of tipping in ODEs include:

- Forest-Savanna bistability
- Deep ocean exchange
- Cloud formation
- Ice sheet melting
- Turbidity in shallow lakes

Examples of spatial patterning – regular patterns



Examples of spatial patterning – spatial interfaces

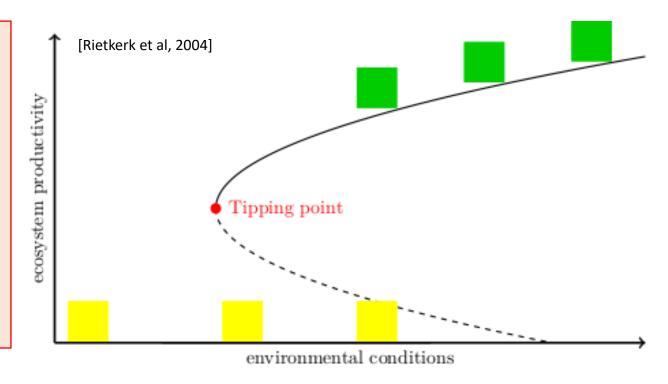


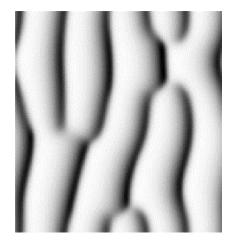
Patterns in models

Add spatial transport:

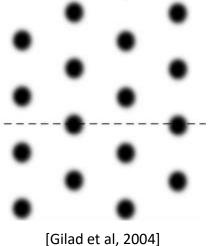
Reaction-Diffusion equations:

$$\begin{cases} \frac{du}{dt} = f(u, v) + D_u \Delta u \\ \frac{dv}{dt} = g(u, v) + D_v \Delta v \end{cases}$$



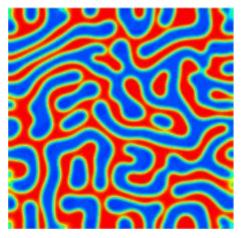


[Klausmeier, 1999]



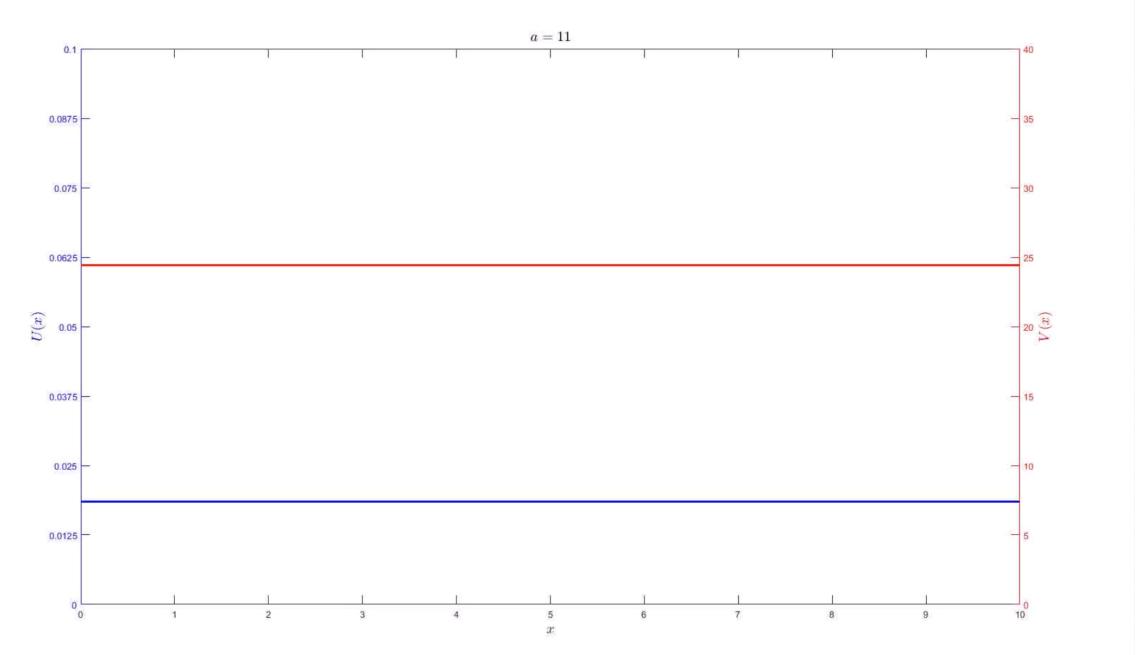


[Rietkerk et al, 2002]



[Liu et al, 2013]

Behaviour of PDEs



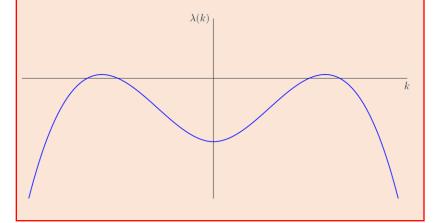
Turing bifurcation

Instability to nonuniform perturbations

$$\binom{u}{v} = \binom{u_*}{v_*} + e^{\lambda t} e^{ikx} \binom{\overline{u}}{\overline{v}}$$

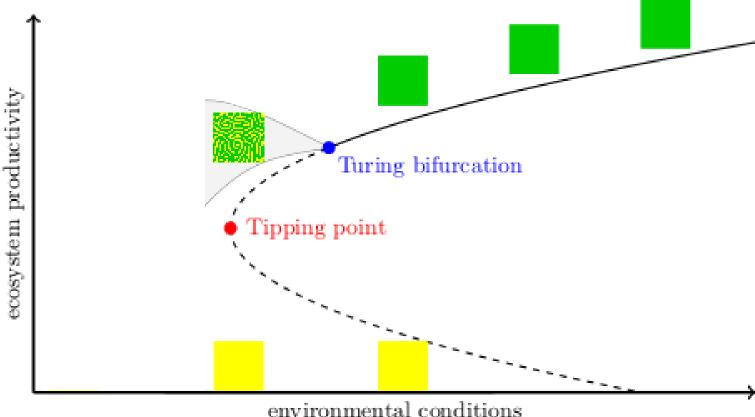
→ Dispersion relation

$$\lambda(k) = \cdots$$



Turing patterns

$$\begin{cases} \frac{du}{dt} = f(u, v) + D_u \Delta u \\ \frac{dv}{dt} = g(u, v) + D_v \Delta v \end{cases}$$



Weakly non-linear analysis

Ginzburg-Landau equation / Amplitude Equation & Eckhaus/Benjamin-Feir-Newel criterion [Eckhaus, 1965; Benjamin & Feir, 1967; Newell, 1974]

Busse balloon

A model-dependent shape in (parameter, observable) space that indicates all stable patterned solutions to the PDE.

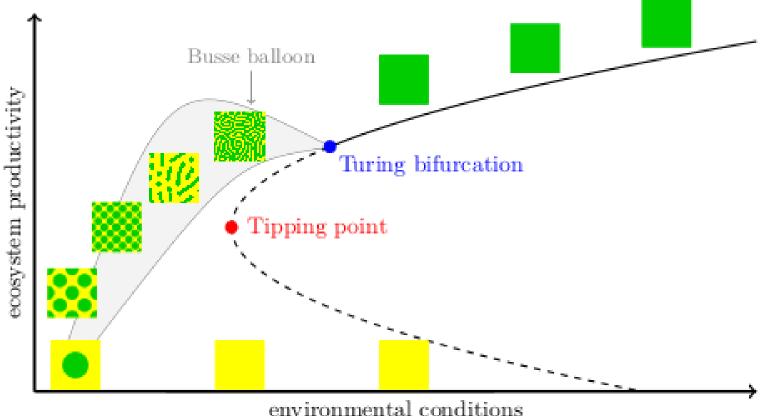
Construction Busse balloon

Via numerical continuation

few general results on the shape of Busse balloon

Busse balloon

$$\begin{cases} \frac{du}{dt} = f(u, v) + D_u \Delta u \\ \frac{dv}{dt} = g(u, v) + D_v \Delta v \end{cases}$$

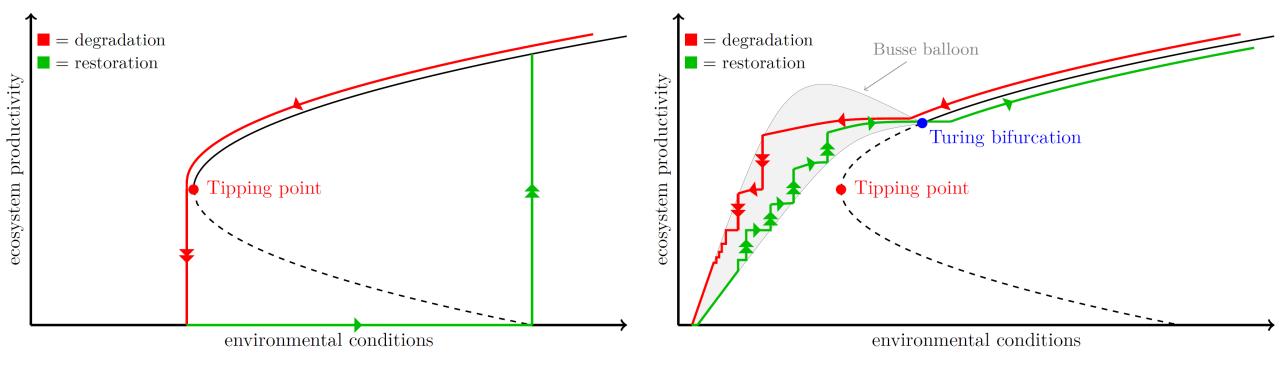


iiv iroimicitaar conditao

Busse balloon

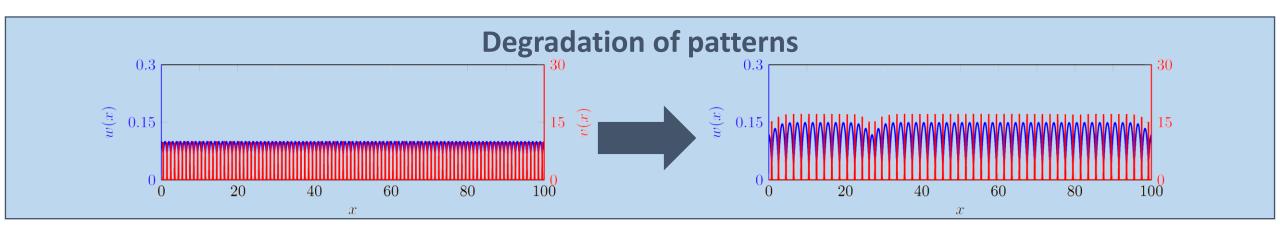
Idea originates from thermal convection [Busse, 1978]

Tipping of (Turing) patterns

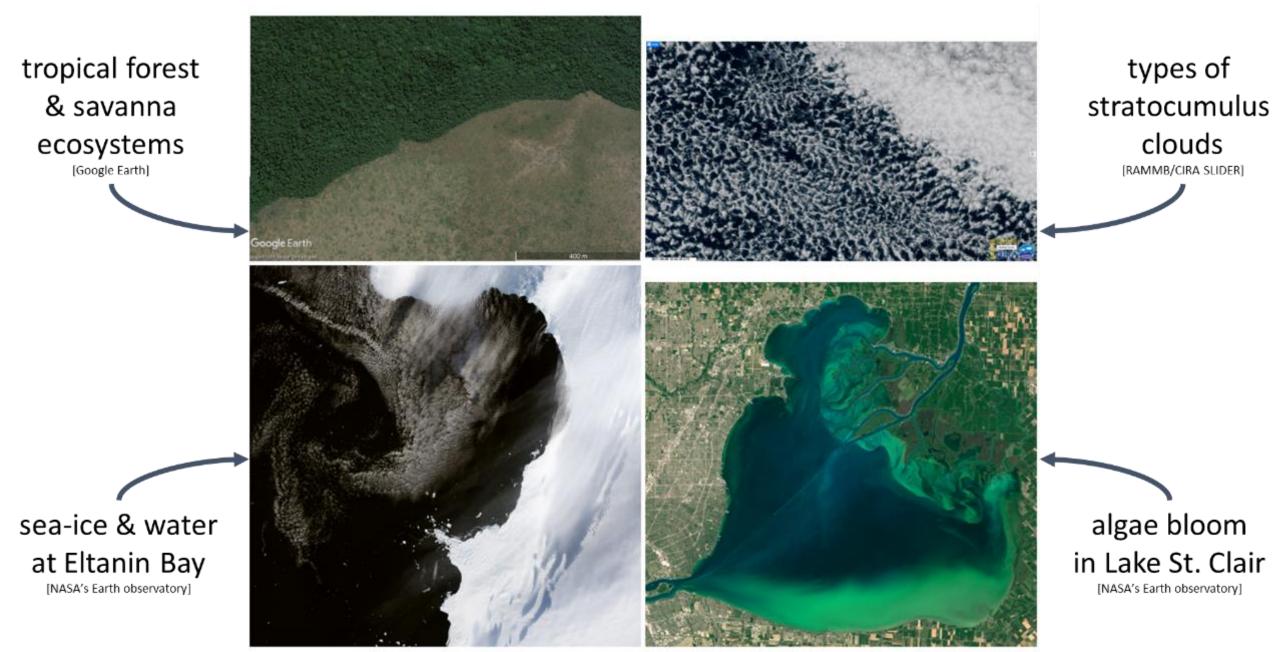


Classic tipping

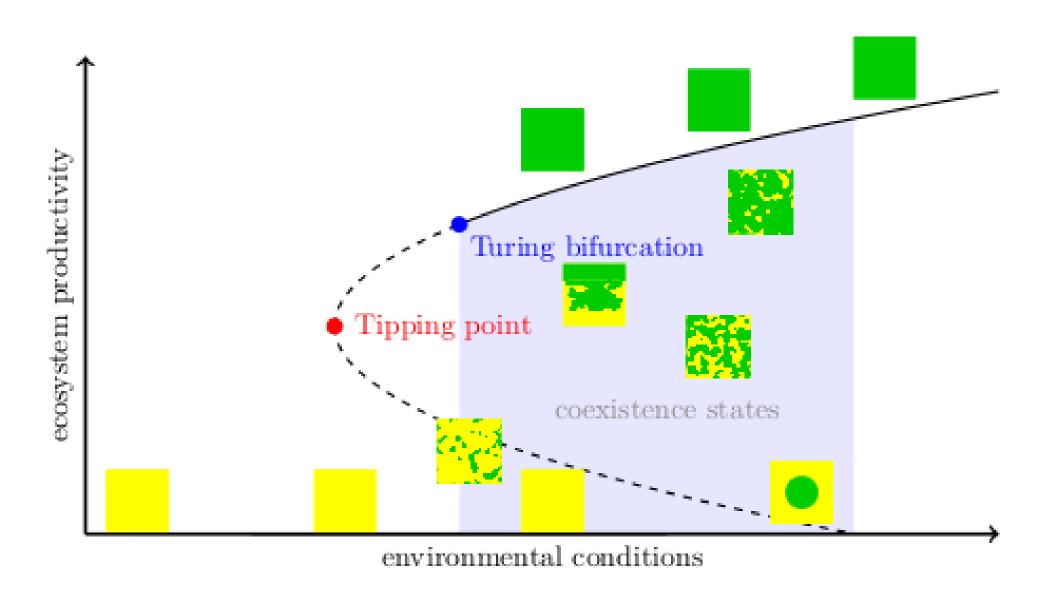
Tipping of patterns



Examples of spatial patterning – spatial interfaces



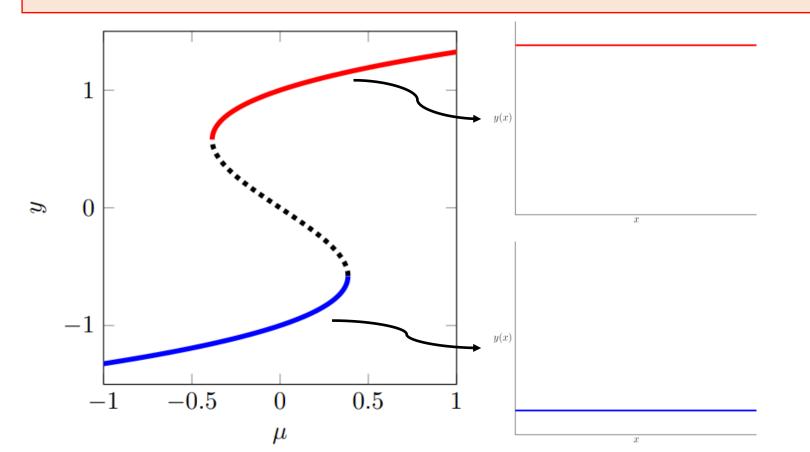
Coexistence states in bifurcation diagram

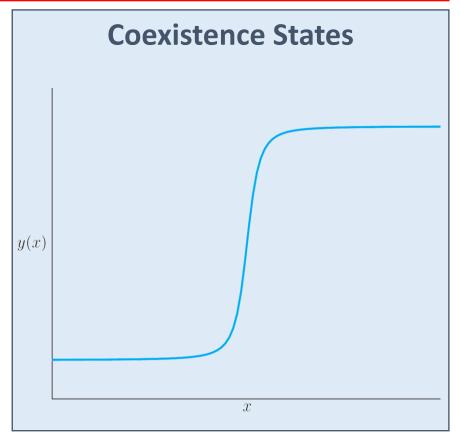


Coexistence states

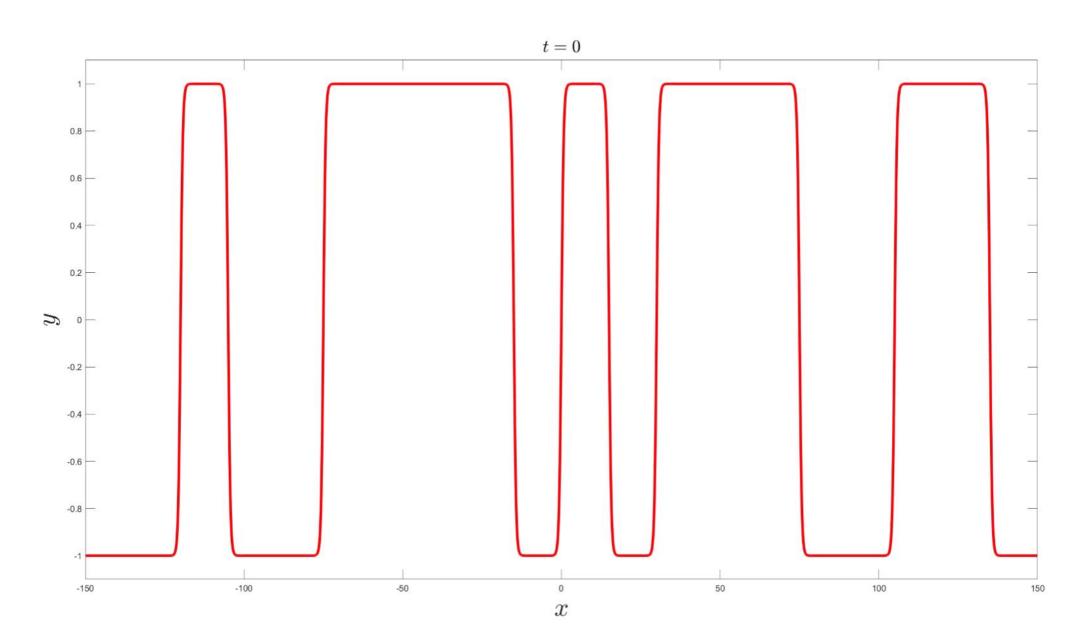
Bistable (Allen-Cahn/Nagumo) equation:

$$\frac{\partial y}{\partial t} = y(1 - y^2) + \mu + D \frac{\partial^2 y}{\partial x^2}$$





Dynamics of $\frac{\partial y}{\partial t} = D \frac{\partial^2 y}{\partial x^2} + y(1-y^2) + \mu$

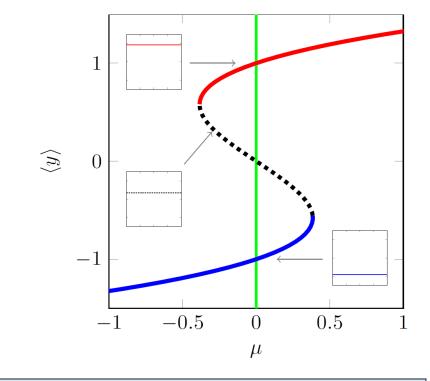


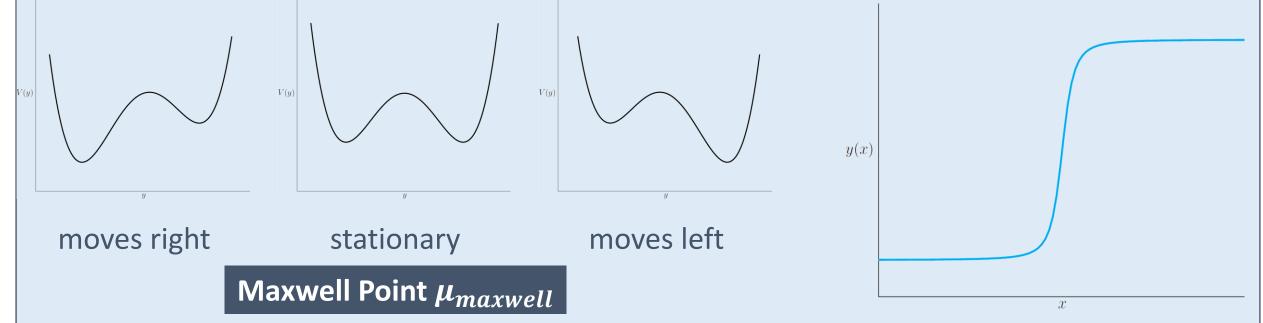
Front Dynamics

$$\frac{\partial y}{\partial t} = D \frac{\partial^2 y}{\partial x^2} + f(y; \mu)$$

Potential function $V(y; \mu)$:

$$\frac{\partial V}{\partial y}(y;\mu) = -f(y;\mu)$$





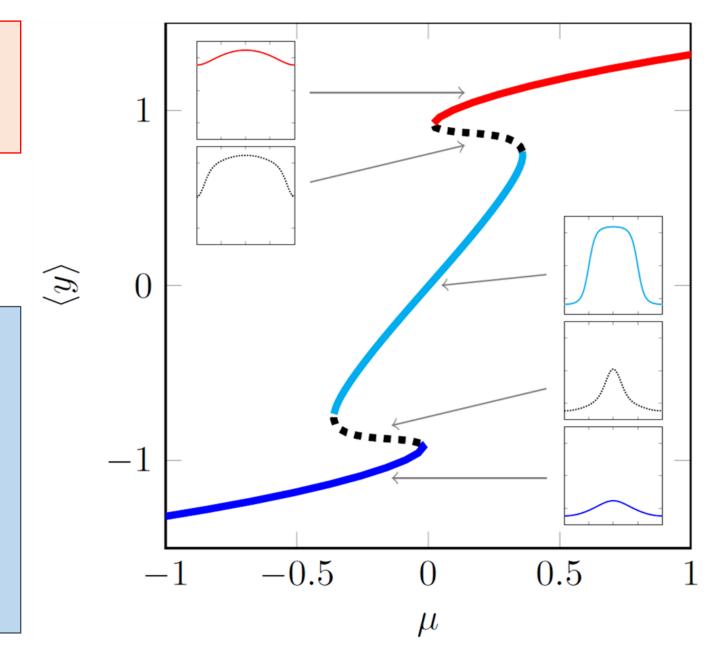
Adding Spatial Heterogeneity

$$\frac{\partial y}{\partial t} = D \frac{\partial^2 y}{\partial x^2} + f(y, \mathbf{x}; \mu)$$

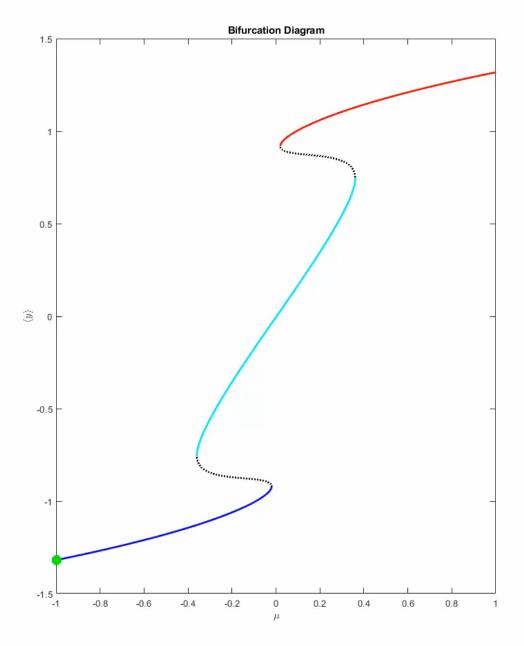
Now, the **local** difference in potentials determines the front movement

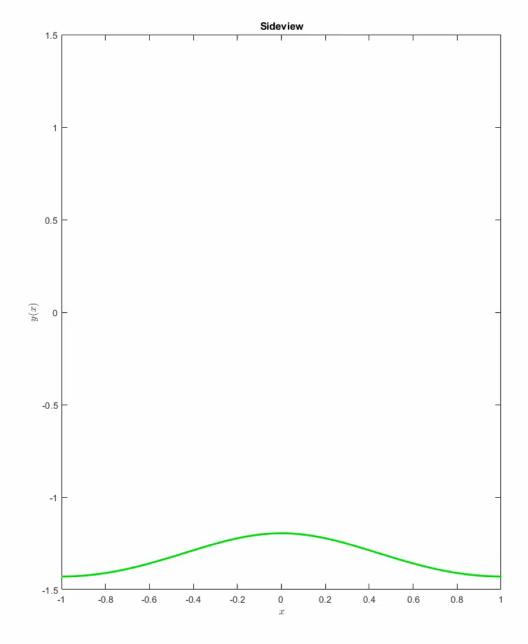
New behaviour:

- Multi-fronts can be stationary
- Maxwell point is smeared out

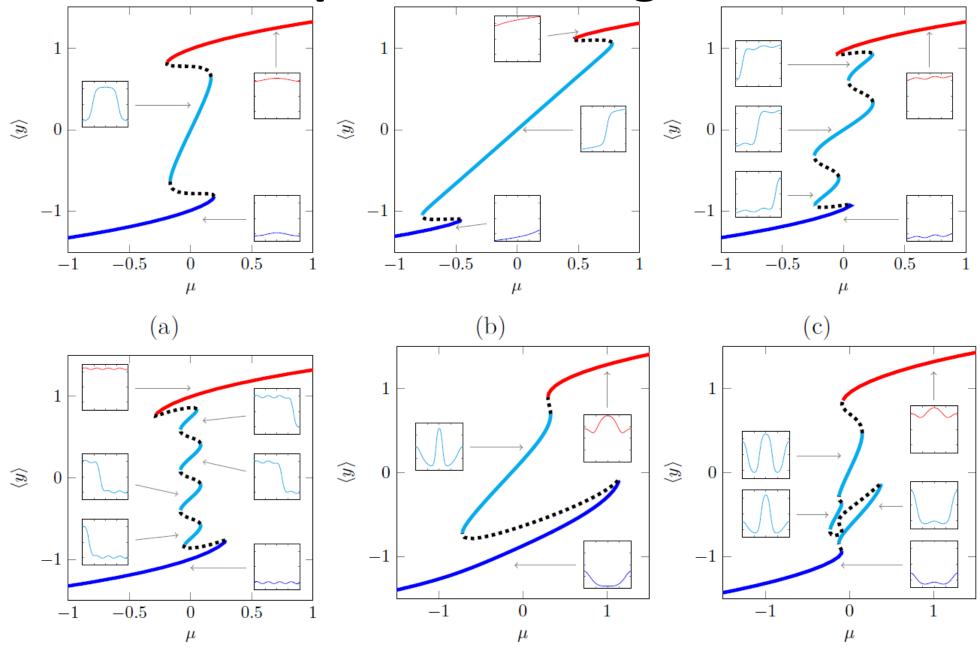


Fragmented Tipping

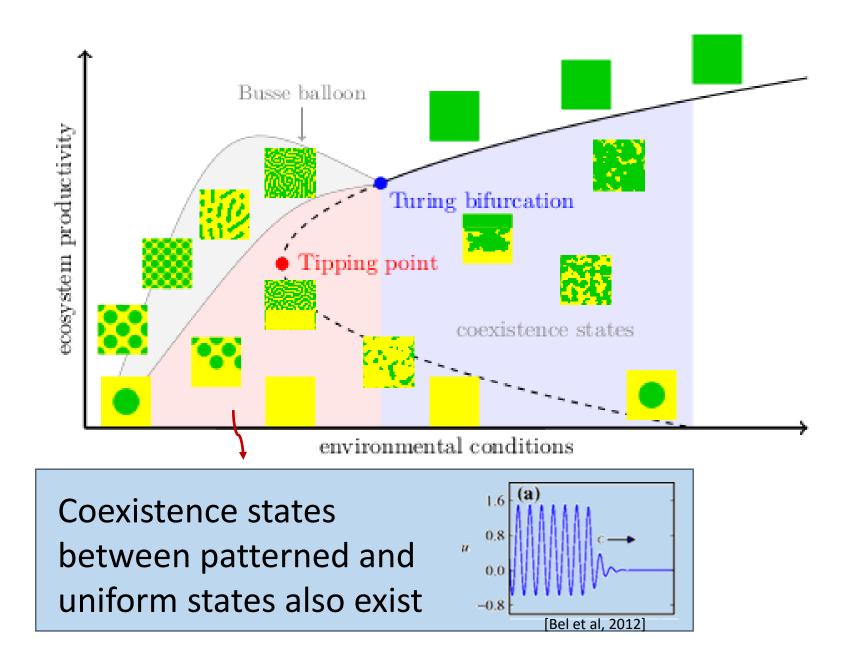




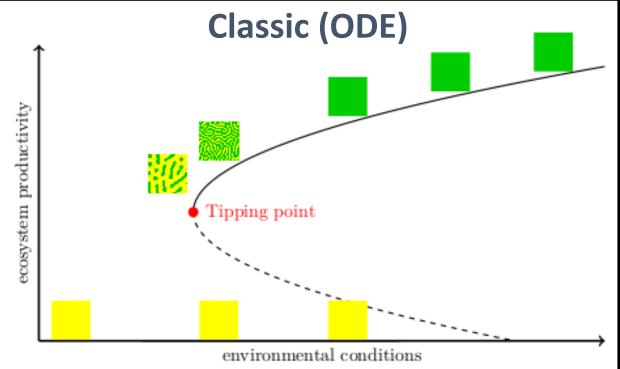
Other Spatial Heterogeneities



"Bifurcation Diagram" for spatially extended systems



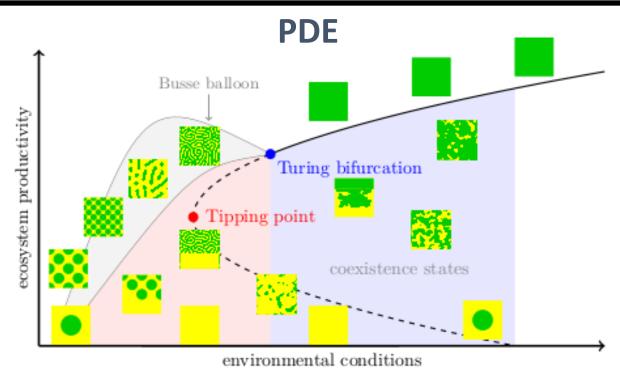
What if the system tips?



Crossing a Tipping Point:

→ Always full reorganization

Early Warning Signals signal for WHEN



Crossing a bifurcation:

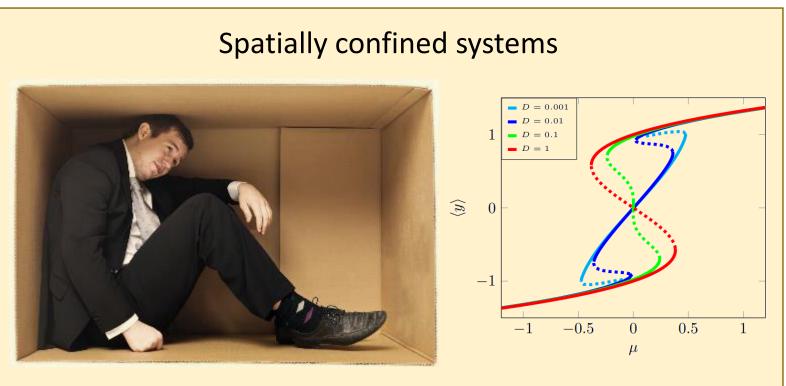
Now also possible:

- → Spatial reorganization (Turing patterns)
- → Fragmented tipping (coexistence states)

Early Warning Signals
need to signal WHEN & WHAT

Do systems always behave like this? (a.k.a. the small print)

No.



→ Such systems (again) behave like ODEs ←

But even in other systems terms & conditions apply: System-specific knowledge is required!

Spatial Patterns:

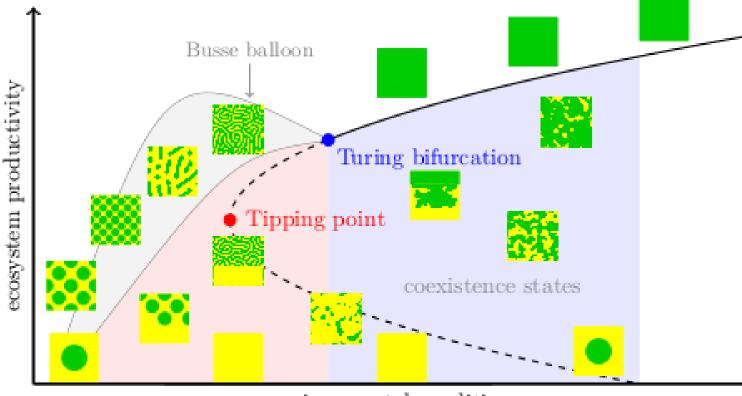
- Turing Patterns
- © Coexistence States

Tipping can be more subtle:

- Spatial reorganization
- Fragmented Tipping

Dynamics of Patterns is:

- Slow Pattern Adaptation
- Fast Pattern Degradation



Summary

environmental conditions

Rietkerk, M., Bastiaansen, R., Banerjee, S., van de Koppel, J., Baudena, M., & Doelman, A. (2021). Evasion of tipping in complex systems through spatial pattern formation. Science, 374(6564), eabj0359.

THANKS TO: Alexandre Bouvet Swarnendu Banerjee Mara Baudena Martina Chirilus-Bruckner Vincent Deblauwe Arjen Doelman Henk Dijkstra Maarten Eppinga Anna von der Heydt Olfa Jaïbi Johan van de Koppel Stéphane Mermoz Max Rietkerk Eric Siero Koen Siteur

Bastiaansen, R., Dijkstra, H. A., & von der Heydt, A. S. (2021). **Fragmented Tipping in a spatially heterogeneous world**. *Environmental Research Letters*, 17, 045006

