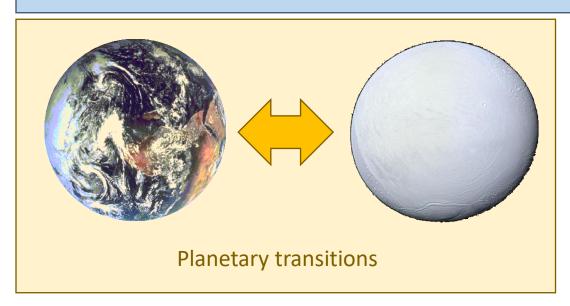
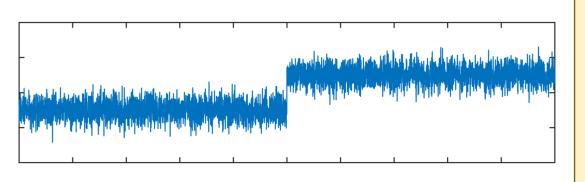


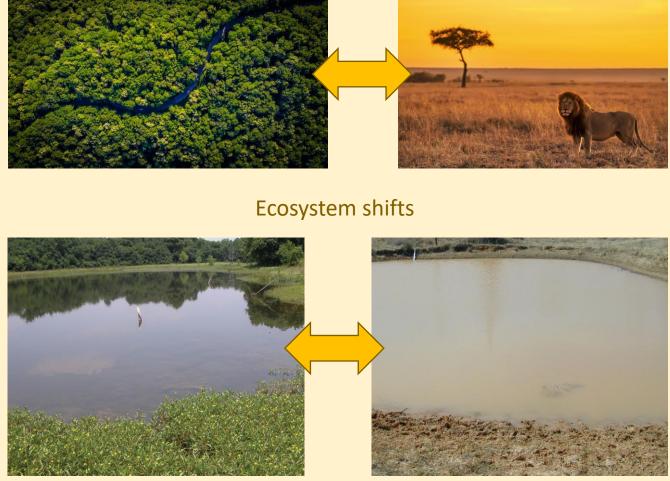
Tipping Points

IPCC AR6 (2021):

"a critical threshold beyond which a system reorganizes, often abruptly and/or irreversibly"



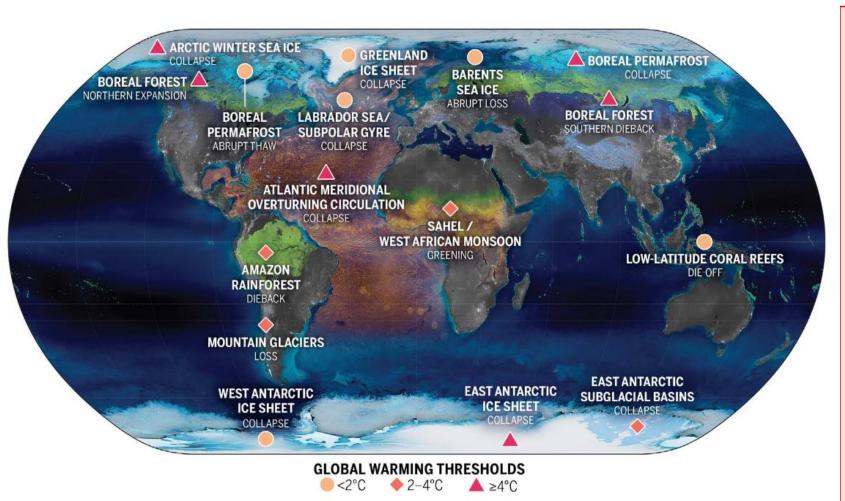




Tipping Points

IPCC AR6 (2021):

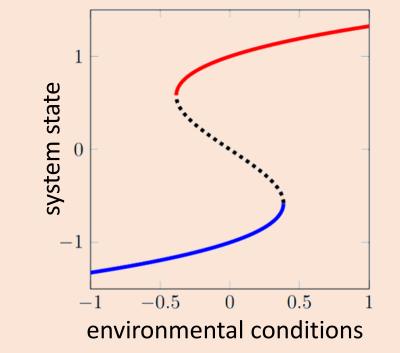
"a critical threshold beyond which a system reorganizes, often abruptly and/or irreversibly"



Mathematics

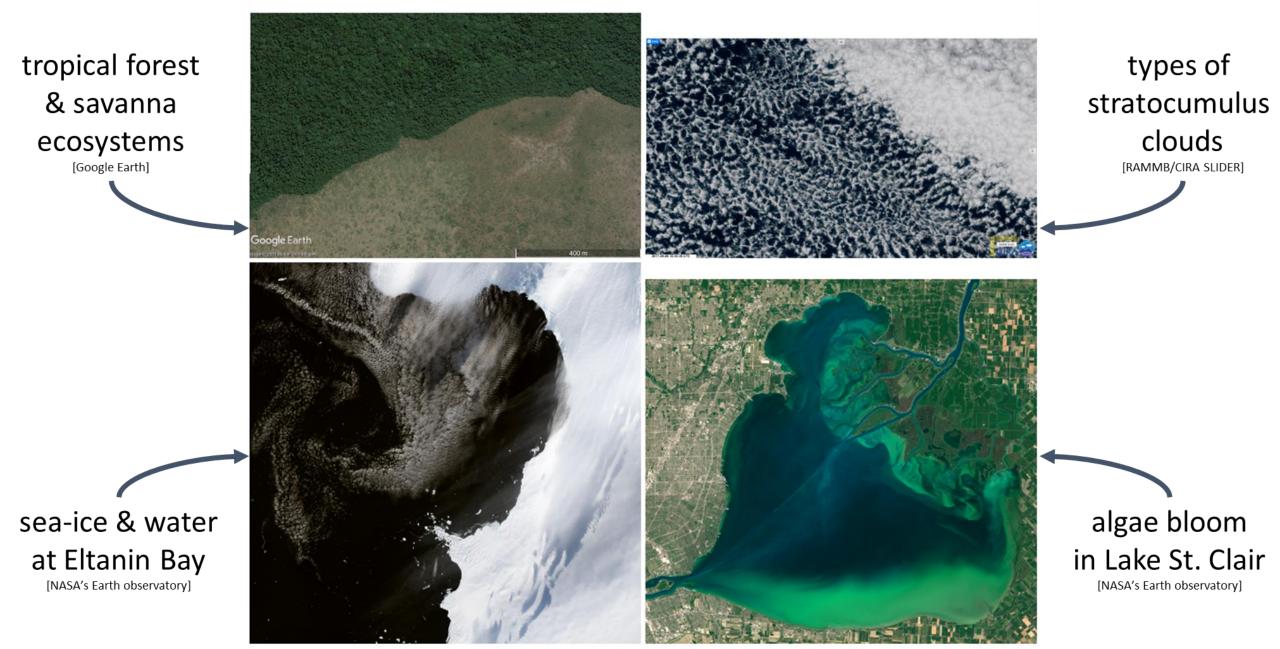
Tipping points ↔ Bifurcations

$$\frac{dy}{dt} = f(y, \mu)$$

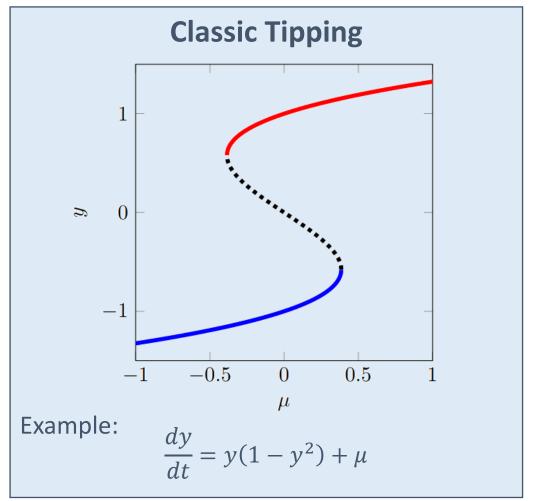


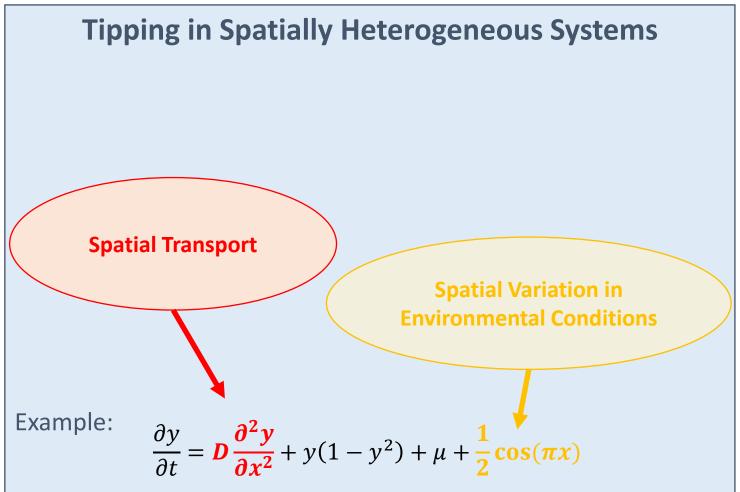
source: McKay et al, 2022

Reality is not always spatially-uniform!



A spatially heterogeneous world





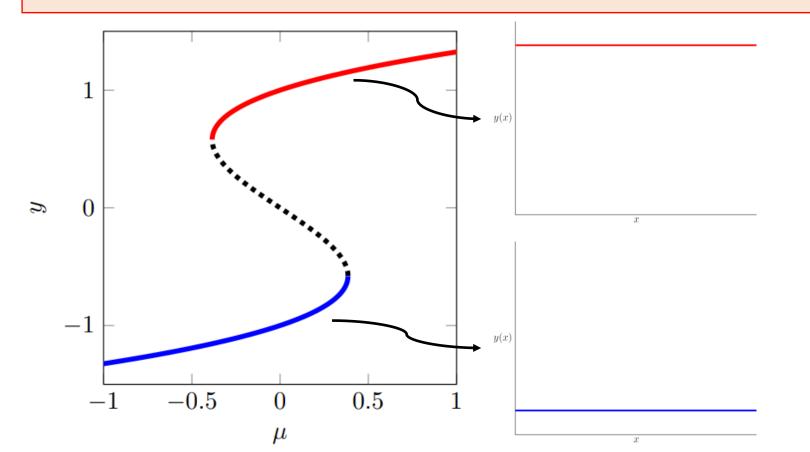
Alternative more math-y title:

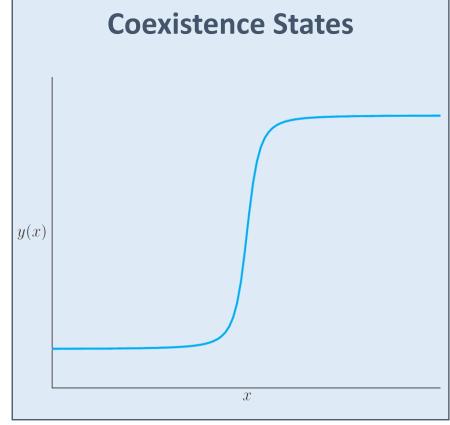
Stationary front solutions in bistable PDEs with coefficients that vary in space

Coexistence states

Bistable (Allen-Cahn/Nagumo) equation:

$$\frac{\partial y}{\partial t} = y(1 - y^2) + \mu + D \frac{\partial^2 y}{\partial x^2}$$



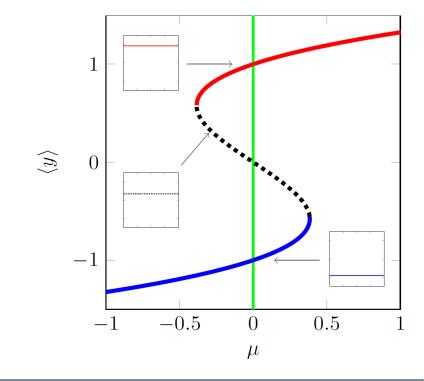


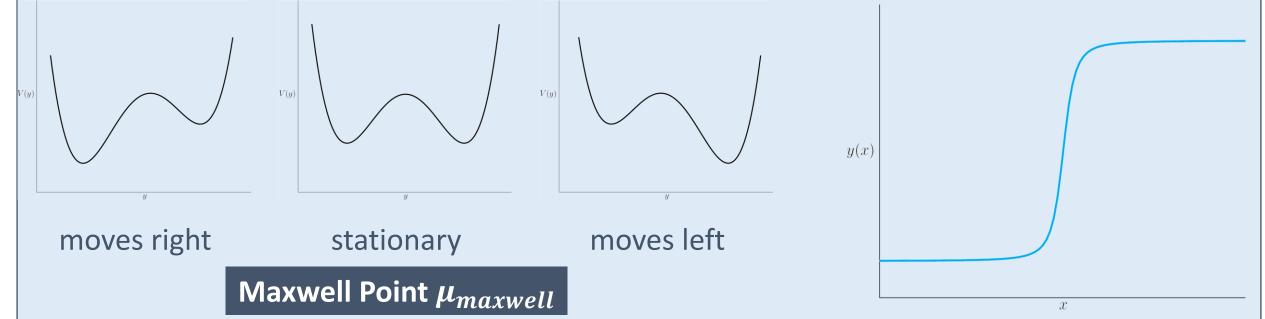
Front Dynamics

$$\frac{\partial y}{\partial t} = D \frac{\partial^2 y}{\partial x^2} + f(y; \mu)$$

Potential function $V(y; \mu)$:

$$\frac{\partial V}{\partial y}(y;\mu) = -f(y;\mu)$$





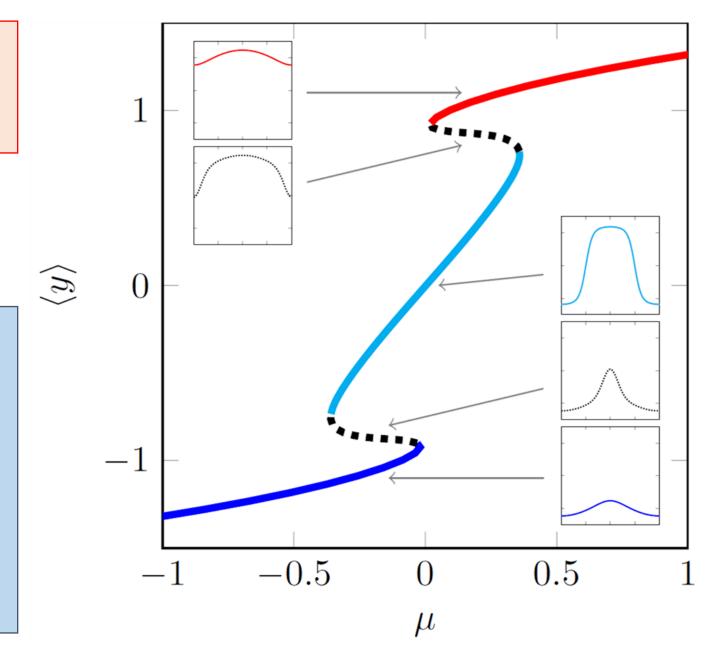
Adding Spatial Heterogeneity

$$\frac{\partial y}{\partial t} = D \frac{\partial^2 y}{\partial x^2} + f(y, \mathbf{x}; \mu)$$

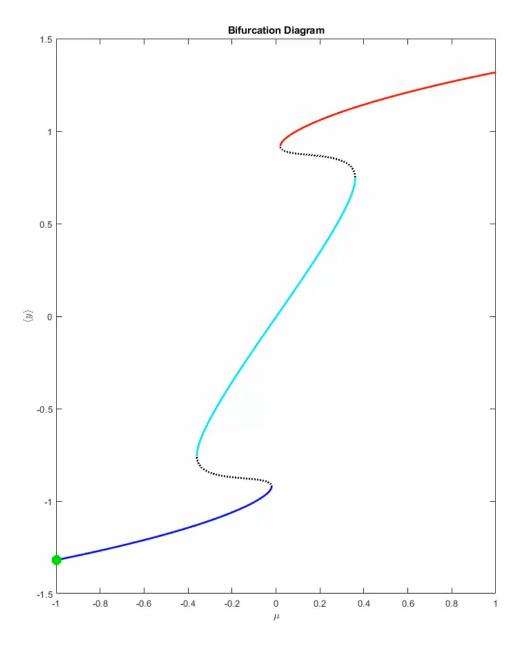
Now, the **local** difference in potentials determines the front movement

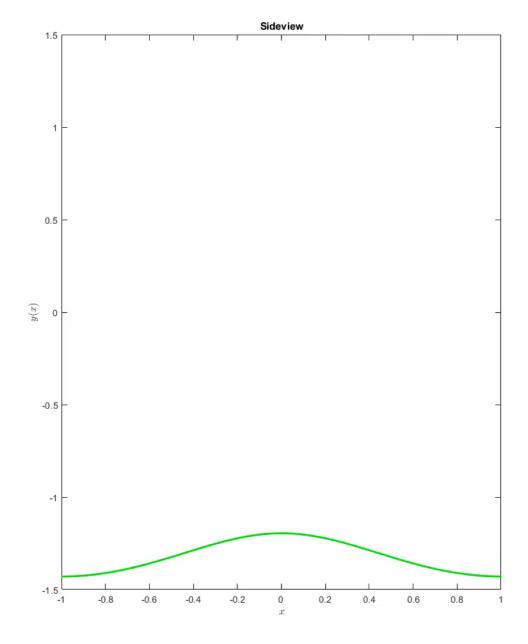
New behaviour:

- Multi-fronts can be stationary
- Maxwell point is smeared out

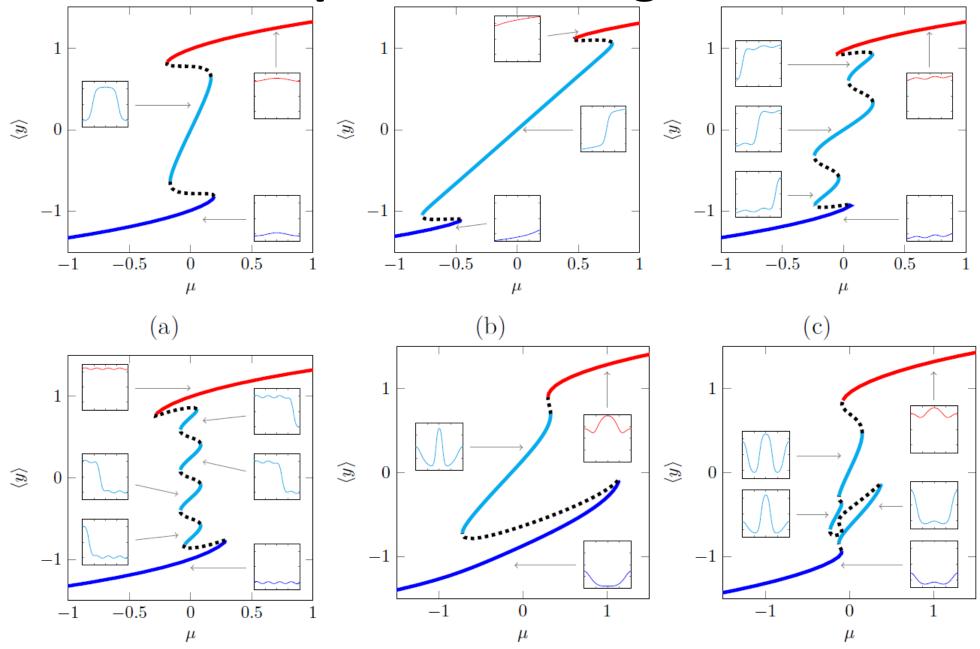


Fragmented Tipping

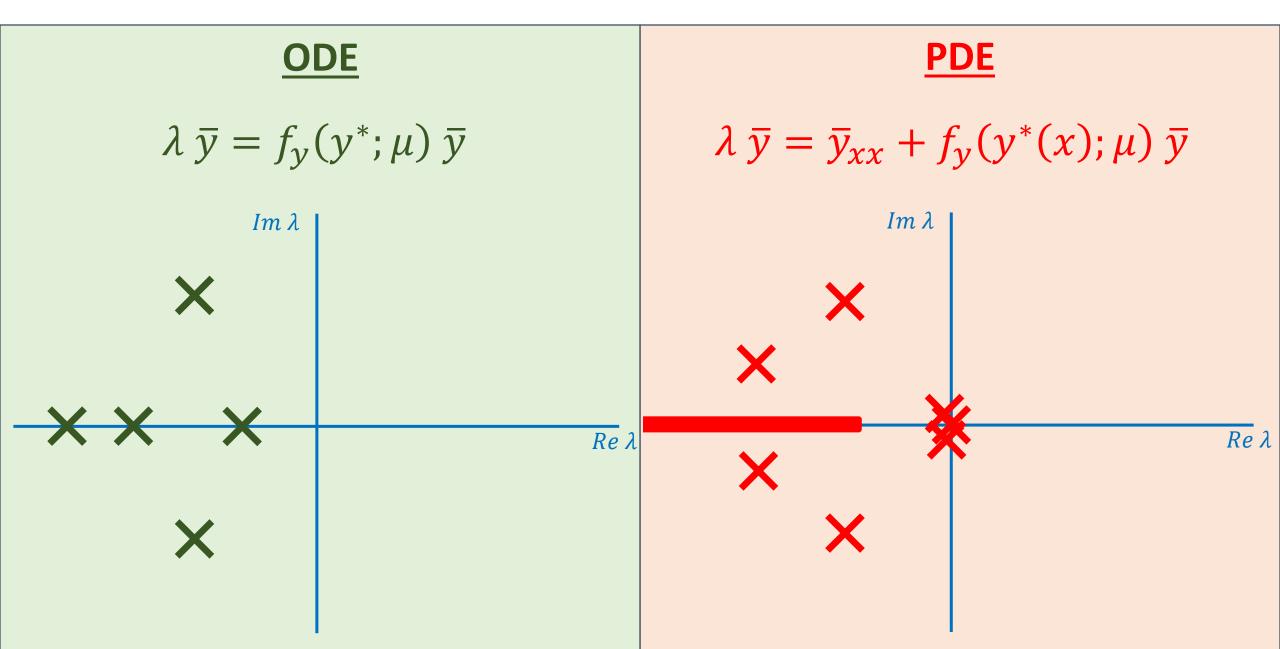




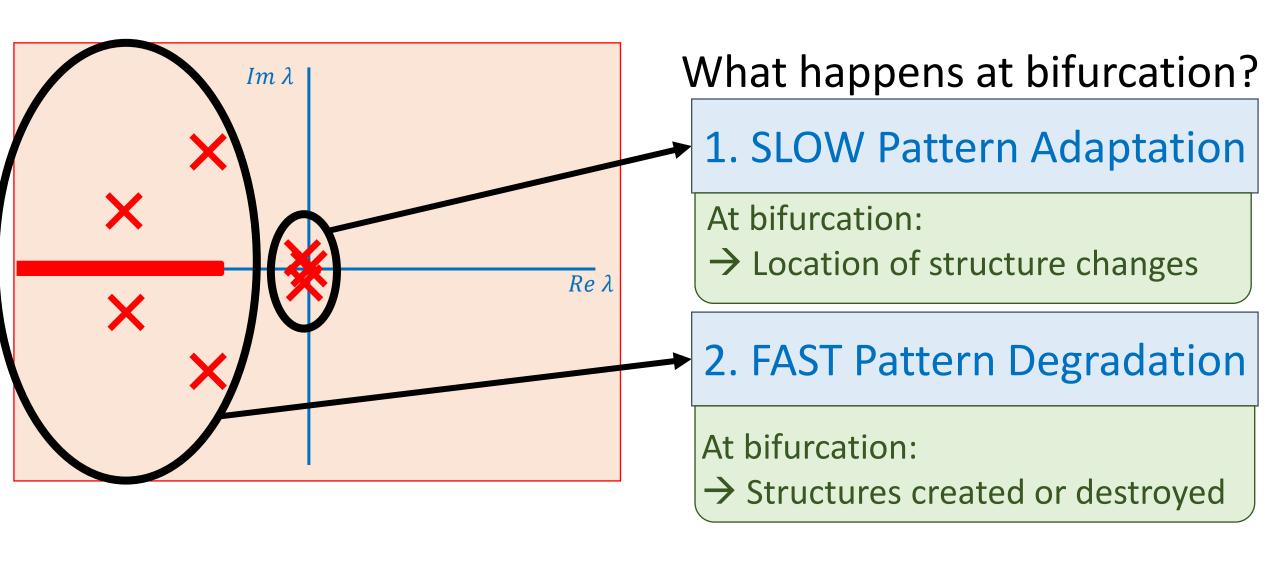
Other Spatial Heterogeneities



Stability of Stationary States

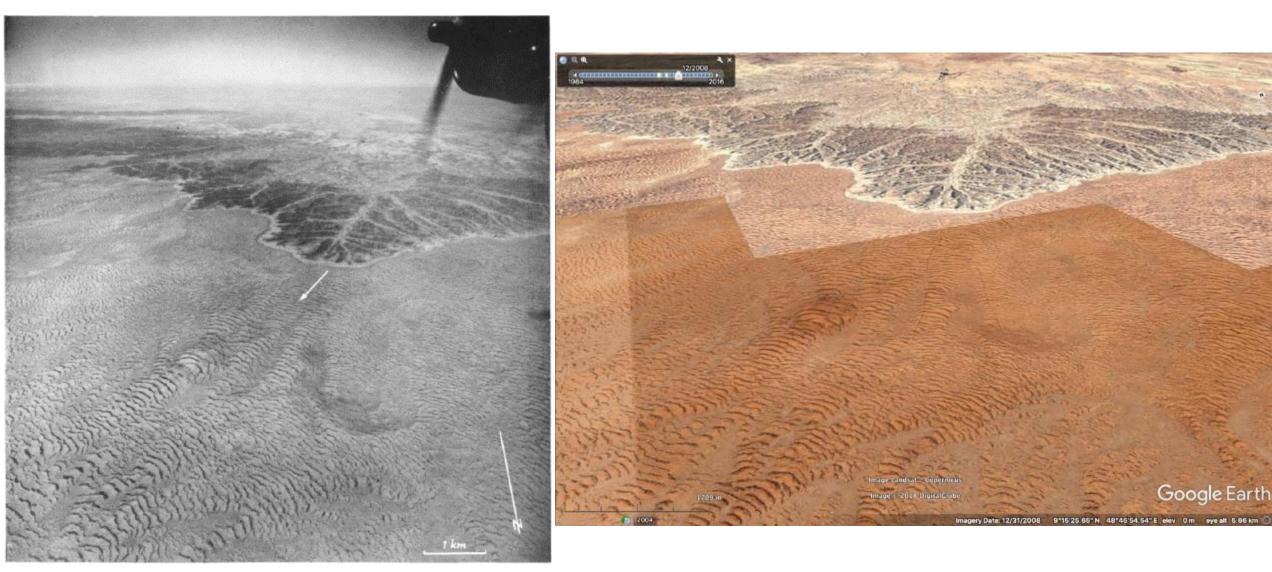


Bifurcations



4

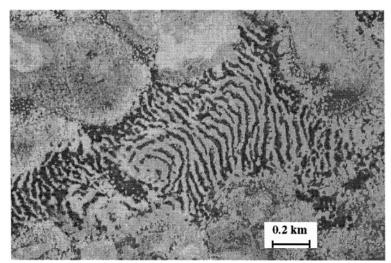
1. SLOW pattern adaptation



Somaliland, 1948 [Macfadyen, 1950]

Somaliland, 2008

2. FAST Pattern Degradation



Niger, 1950 [Valentin, 1999]

Niger, 2008

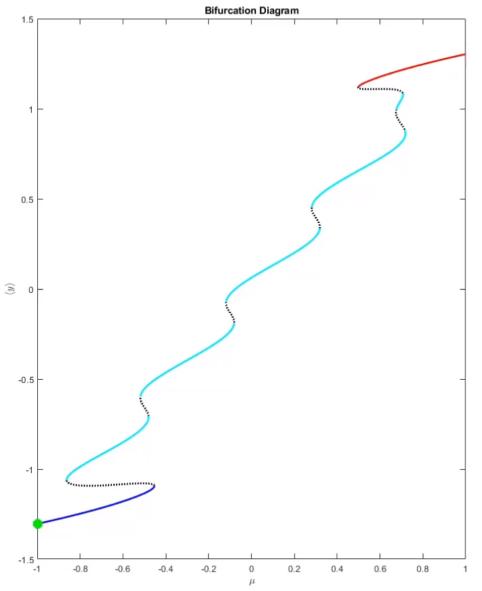
Niger, 2010

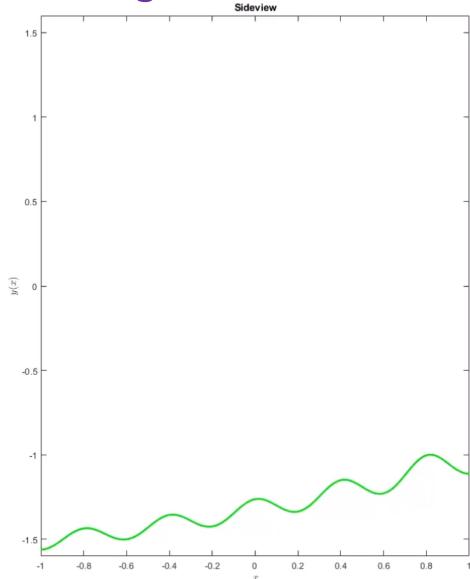
Niger, 2011

Niger, 2014

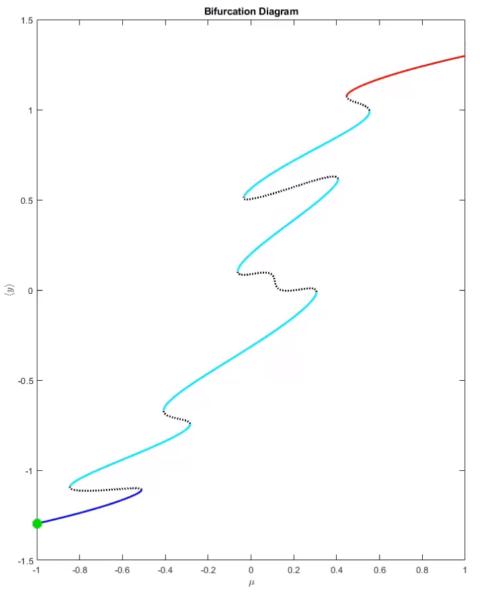
Niger, 2016

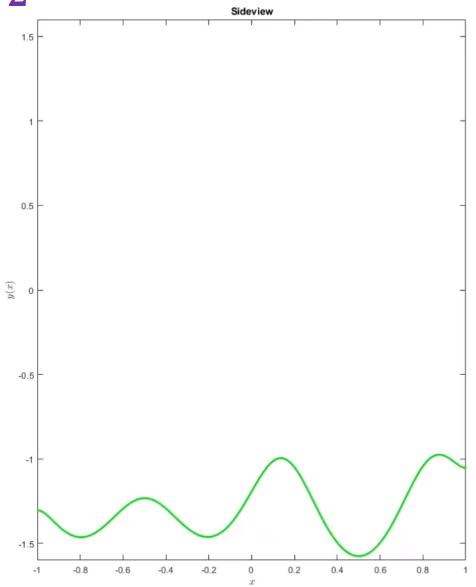
$$y_t = D y_{xx} + y(1 - y^2) + \mu + x + \frac{2}{5} \cos(5\pi x)$$



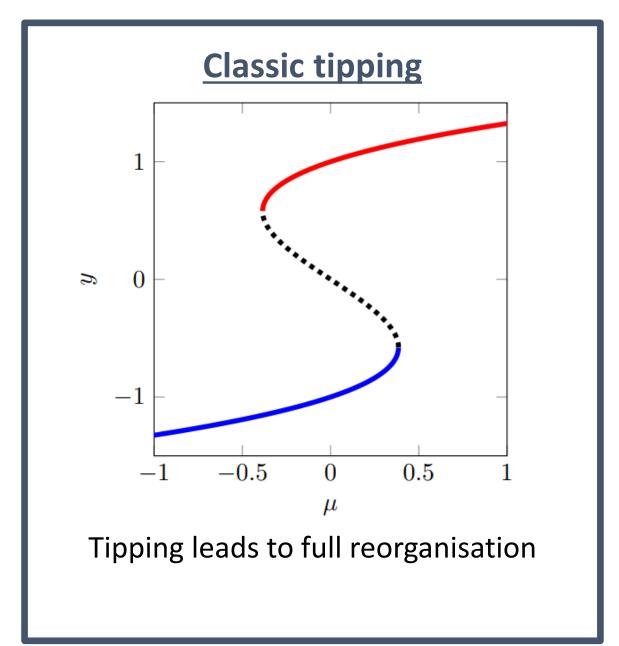


$$y_t = D y_{xx} + y(1 - y^2) + \mu + \frac{1}{2} \cos(2\pi x) + \sin(3\pi x)$$

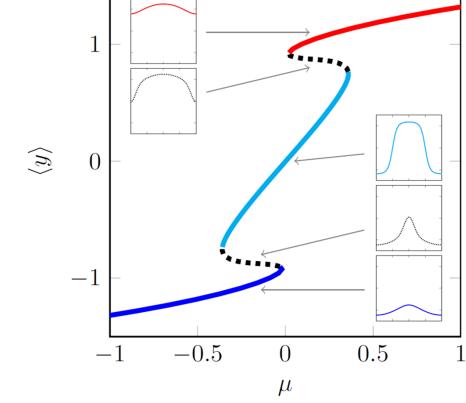




Fragmented Tipping





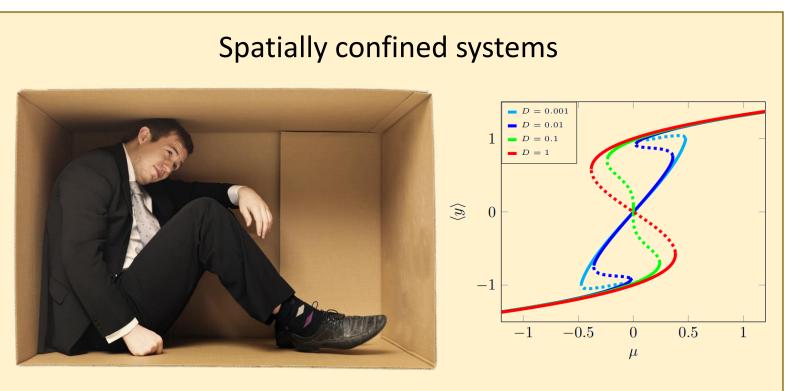


Fragmented tipping possible:
Only part of the domain reorganises

Do systems always behave like this? (a.k.a. the small print)

No.

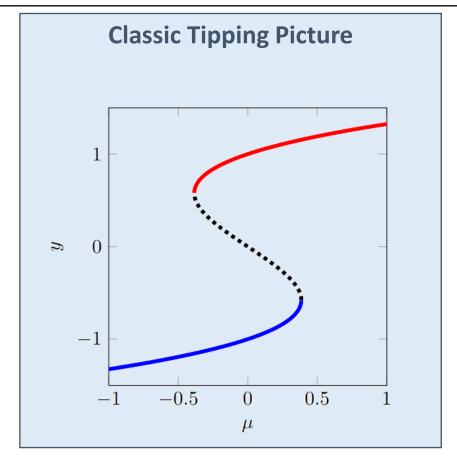


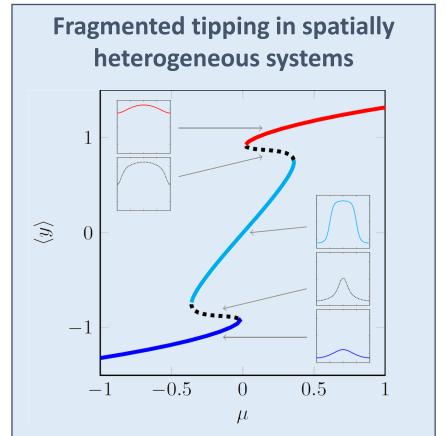


→ Such systems (again) just have one global tipping point ←

But even in other systems terms & conditions apply: System-specific knowledge is required!

Fragmented Tipping in a spatially heterogeneous world





Bastiaansen, R., Dijkstra, H. A., & von der Heydt, A. S. (2022). Fragmented tipping in a spatially heterogeneous world. *Environmental Research Letters*, *17*, *045006*

