Tipping in

Spatially Extended Systems

2023-04-19, Colloquium, MI, Potsdam University Robbin Bastiaansen (r.bastiaansen@uu.nl)

Classic Theory of Tipping

Tipping in ODEs (1)

Canonical example: $\frac{dy}{dt} = y(1 - y^2) + \mu$

Concrete example: Global Energy Balance Model $\frac{dT}{dt} = Q(1 - \alpha(T)) - \varepsilon \sigma_0 T^4 + \mu$

> Classic Literature [Holling, 1973] [Noy-Meier, 1975] [May, 1977]

Tipping [Ashwin et al, 2012]

Bifurcation-Tipping :Basin disappearsNoise-Tipping :Forced outside BasinRate-Tipping :(more complicated)

Tipping in ODEs (2)

Two components:

$$\begin{cases} \frac{du}{dt} = f(u, v) \\ \frac{dv}{dt} = g(u, v) \end{cases}$$

includes common models:

- Predetor-Prey
- Activator-Inhibitor

Examples of tipping in ODEs include:

- Forest-Savanna bistability
- Deep ocean exchange
- Cloud formation
- Ice sheet melting
- Turbidity in shallow lakes

Examples of spatial patterning – regular patterns

mussel beds

savannas

melt ponds

drylands

Examples of spatial patterning – spatial interfaces

Part 1: Turing Patterns

Patterns in models

Add spatial transport: Reaction-Diffusion equations:

$$\frac{du}{dt} = f(u, v) + D_u \Delta u$$
$$\frac{dv}{dt} = g(u, v) + D_v \Delta v$$

environmental conditions

[Klausmeier, 1999]

[Gilad et al, 2004]

[Rietkerk et al, 2002]

[Liu et al, 2013]

Behaviour of PDEs

Tipping of (Turing) patterns

Part 2: Coexistence States and spatial heterogeneities

Coexistence states in bifurcation diagram

Coexistence states

Dynamics of $\frac{\partial y}{\partial t} = D \frac{\partial^2 y}{\partial x^2} + y(1-y^2) + \mu$

x

Front Dynamics

$$\frac{\partial y}{\partial t} = D \frac{\partial^2 y}{\partial x^2} + f(y;\mu)$$

Potential function $V(y; \mu)$: $\frac{\partial V}{\partial y}(y; \mu) = -f(y; \mu)$

Adding Spatial Heterogeneity

Fragmented Tipping

Part 3: Tipping in Spatially Extended Systems?

"Bifurcation Diagram" for spatially extended systems

What if the system tips?

Mathematical Differences Between ODEs & PDEs

Differences between ODEs and PDEs

	\underline{ODE} $y_t = f(y; \mu)$	$\frac{PDE}{y_t} = y_{xx} + f(y;\mu)$
Stationary States	$0 = f(y^*; \mu)$	$0 = y_{xx}^* + f(y^*; \mu)$
Linear Stability	$\lambda \overline{y} = f_y(y^*; \mu) \overline{y}$	$\lambda \bar{y} = \bar{y}_{xx} + f_y(y^*(x);\mu) \bar{y}$

Stationary States

$$y_t = y_{xx} + f(y;\mu)$$

Stability of Stationary States

Part 5: **Dynamics & Bifurcations of Patterned States**

Dynamics of Patterned States

1. SLOW pattern adaptation

Somaliland, 1948 [Macfadyen, 1950]

Somaliland, 2008

2. FAST Pattern Degradation

Niger, 1950 [Valentin, 1999]

Niger, 2008

Niger, 2010

Niger, 2011

Niger, 2014

Niger, 2016

Bifurcations

x

x

Vegetation patches under climate change

Tipping in Spatially Extended Systems

Summary

What if the system tips?

Do systems always behave like this? (a.k.a. the small print)

No.

 \rightarrow Such systems (again) behave like ODEs \leftarrow

But even in other systems terms & conditions apply: System-specific knowledge is required!

Spatial Patterns:

- Turing Patterns
- Coexistence States
- Tipping can be more subtle: Spatial reorganization
- Fragmented Tipping

THANKS TO:			
Swarnendu Banerjee	Mara Baudena	Alexandre Bouvet	
Martina Chirilus-Bruckner	Vincent Deblauwe	Arjen Doelman	
Henk Dijkstra	Maarten Eppinga	Anna von der Heydt	
Olfa Jaïbi	Johan van de Koppel	Stéphane Mermoz	
Max Rietkerk	Eric Siero	Koen Siteur	

Summary

environmental conditions

Rietkerk, M., Bastiaansen, R., Banerjee, S., van de Koppel, J., Baudena, M., & Doelman, A. (2021). Evasion of tipping in complex systems through spatial pattern formation. science, 374(6564), eabj0359.

