Climate response and sensitivity: time scales and late tipping points

Robbin Bastiaansen (r.bastiaansen@uu.nl) SIAM GS23, 2023-06-22

Climate Response

The change in observable due to climate forcing (e.g. CO2)

Equilibrium Climate Sensitivity (ECS)

change in equilibrium temperature due to (instantaneous) doubling of CO2

Transient Climate Response (TCR)

change in temperature after 100 years with 1% CO2 increase per year (until doubling)

Methodology

- <u>DESIGN</u> experimental protocol for GCM
- <u>FIT</u> resulting time series to simple model
- <u>EXTRAPOLATION</u> using simple model

TODAY: a few words of caution, and some recommendations

Multiscale Global Energy Balance Model

Equilibrium: Background dependency

Equilibrium: forcing dependencv

Equilibrium inferred from dynamics

Examples:	
Gregory method:	$\Delta R(t) = \lambda \Delta T(t) + f$
Linear Response Theory:	$\Delta T(t) = (G \star g) (t)$

Dynamics: linear response – pitfalls of extrapolation

[Bastiaansen, Ashwin, Von der Heydt, 2023]

Dynamics: Nonlinear Response

[Bastiaansen, Ashwin, Von der Heydt, 2023]

How does this work?

Nonlinear Response in GCM

(Data from CESM1.0.4 runs in LongRunMIP)

Ensemble Variability

Variability due to precise location on initial attractor

Image source: [Ghil & Lucarini, 2020] & [Ghil, 2017]

Ensemble Variability – NO tipping

Ensemble Variability – WITH tipping

Partial Tipping

Summary

- Climate response is background dependent
- Response depends nonlinearly on forcing
- Models have time scale of validity
 - Extreme example: Late tipping points
- Climate response is sensitive to initial conditions
 - Extreme example: Partial tipping

Paper:

Bastiaansen, R., Ashwin, P., & von der Heydt, A. S. (2023). Climate response and sensitivity: time scales and late tipping points. Proceedings of the Royal Society A, 479(2269), 20220483.

Recommendations

- 1. Do response experiments with different background states
- 2. Investigate nonlinearities and tipping points
- 3. Give time scale of validity of models and extrapolations
- 4. Sample variation in response due to initial condition variation
- 5. Go beyond GMST (global mean surface temperature)

Paper:

Bastiaansen, R., Ashwin, P., & von der Heydt, A. S. (2023). Climate response and sensitivity: time scales and late tipping points. Proceedings of the Royal Society A, 479(2269), 20220483.