

Front Solutions

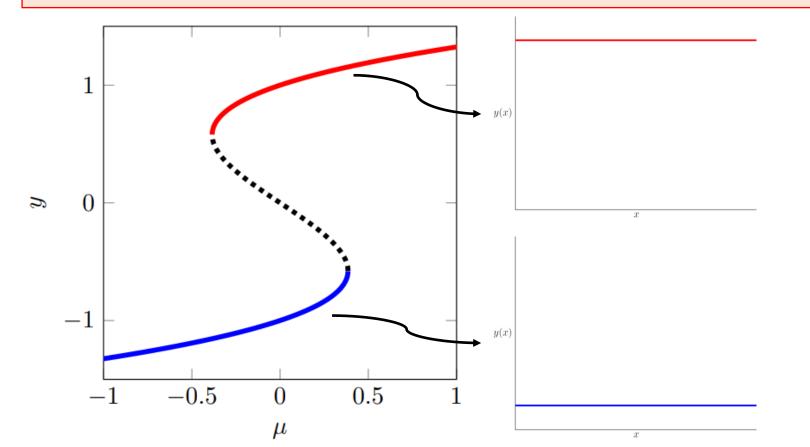
Bistable (Allen-Cahn/Nagumo) equation:

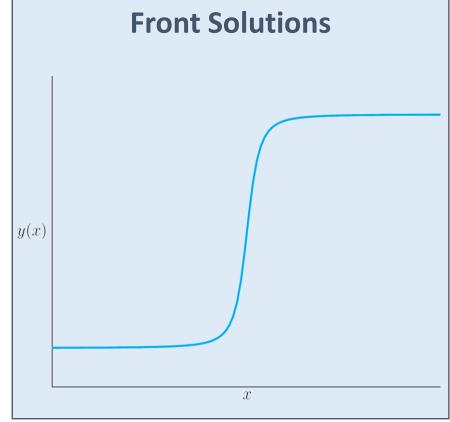
$$\frac{\partial y}{\partial t} = D \frac{\partial^2 y}{\partial x^2} + y(1 - y^2) + \mu$$

Front Solutions

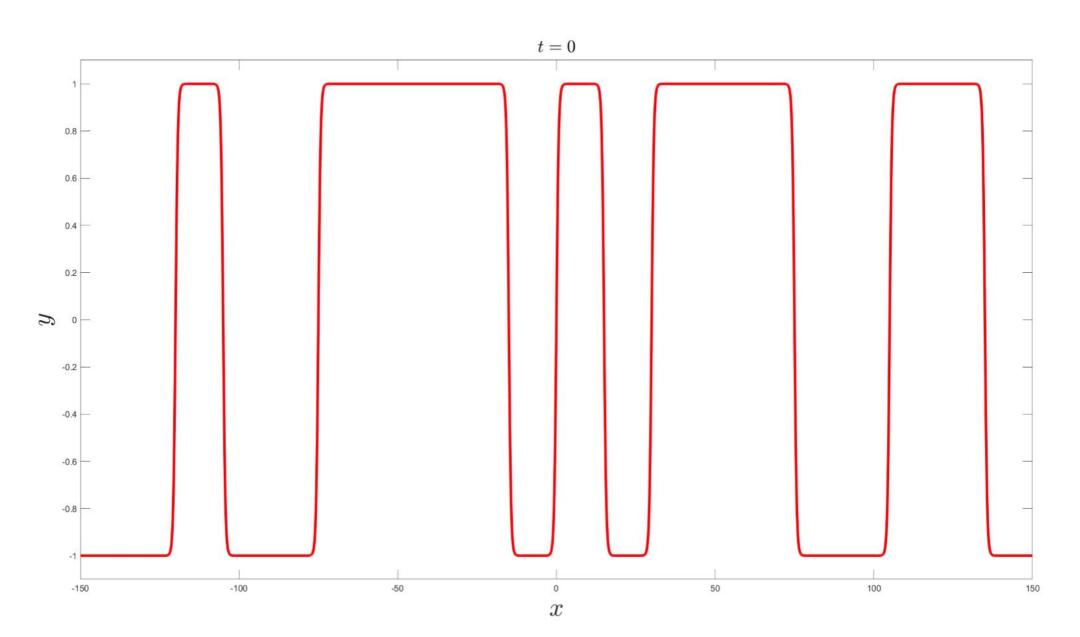
Bistable (Allen-Cahn/Nagumo) equation:

$$\frac{\partial y}{\partial t} = D \frac{\partial^2 y}{\partial x^2} + y(1 - y^2) + \mu$$





Dynamics of $\frac{\partial y}{\partial t} = D \frac{\partial^2 y}{\partial x^2} + y(1-y^2) + \mu$

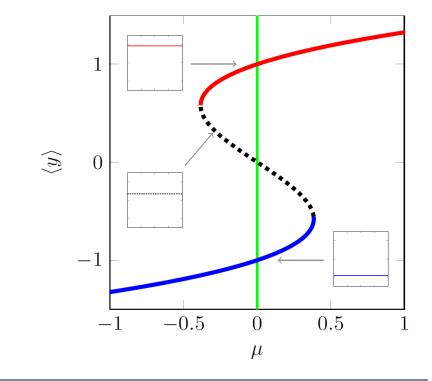


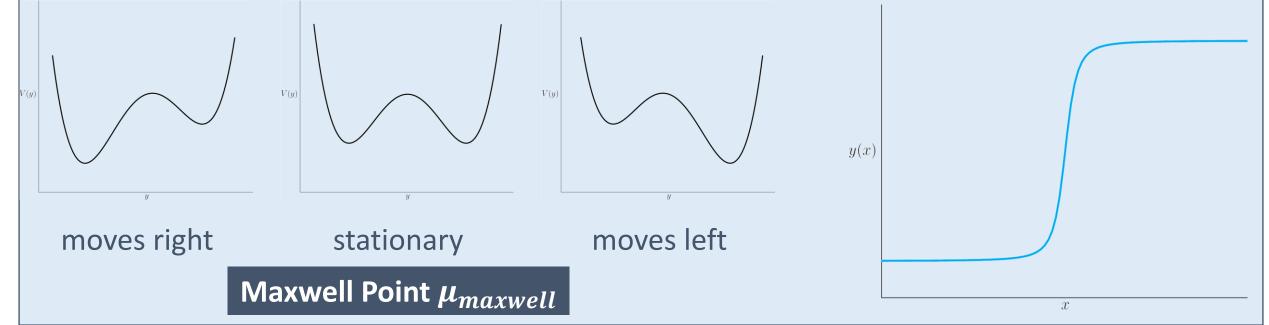
Front Dynamics

$$\frac{\partial y}{\partial t} = D \frac{\partial^2 y}{\partial x^2} + f(y; \mu)$$

Potential function $V(y; \mu)$:

$$\frac{\partial V}{\partial y}(y;\mu) = -f(y;\mu)$$





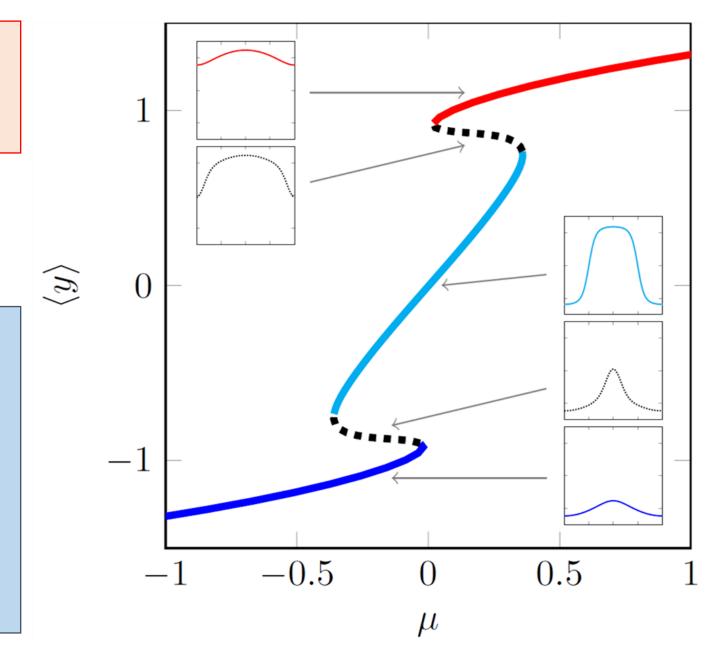
Adding Spatial Heterogeneity

$$\frac{\partial y}{\partial t} = D \frac{\partial^2 y}{\partial x^2} + f(y, \mathbf{x}; \mu)$$

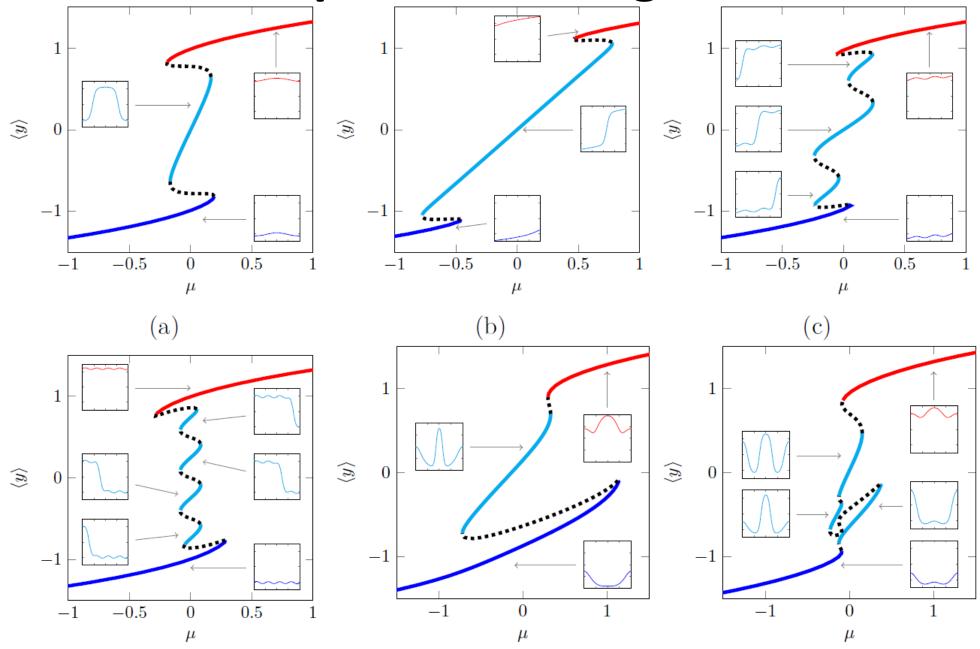
Now, the **local** difference in potentials determines the front movement

New behaviour:

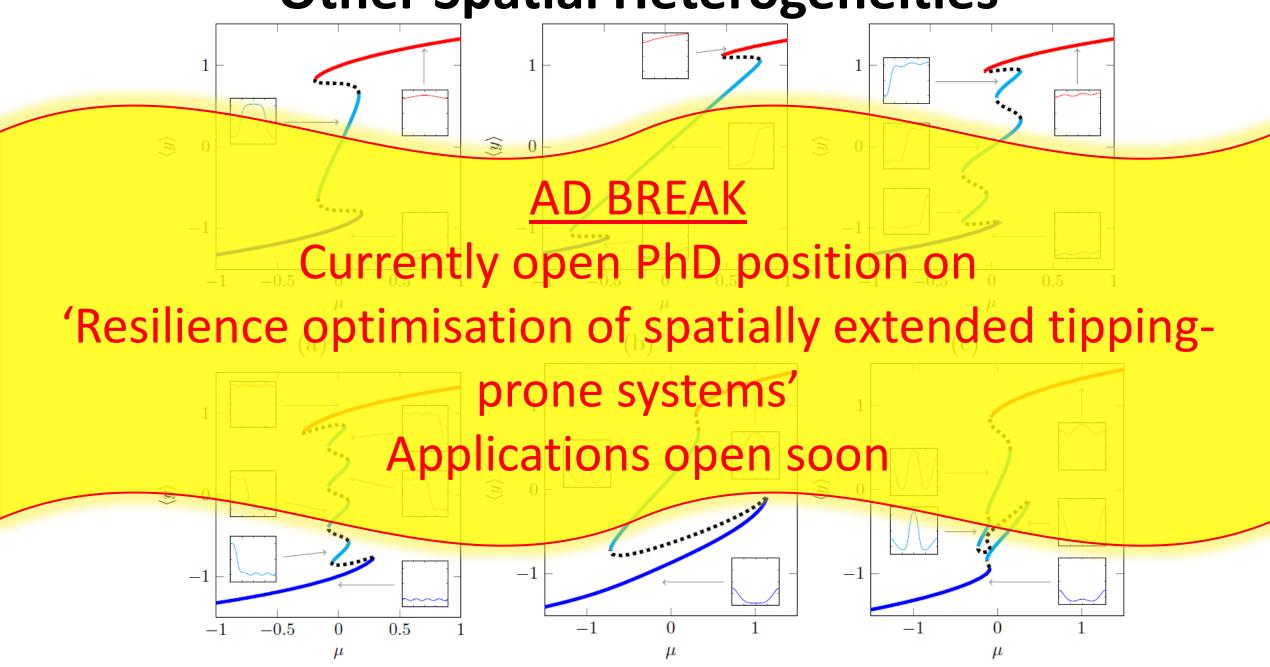
- Multi-fronts can be stationary
- Maxwell point is smeared out



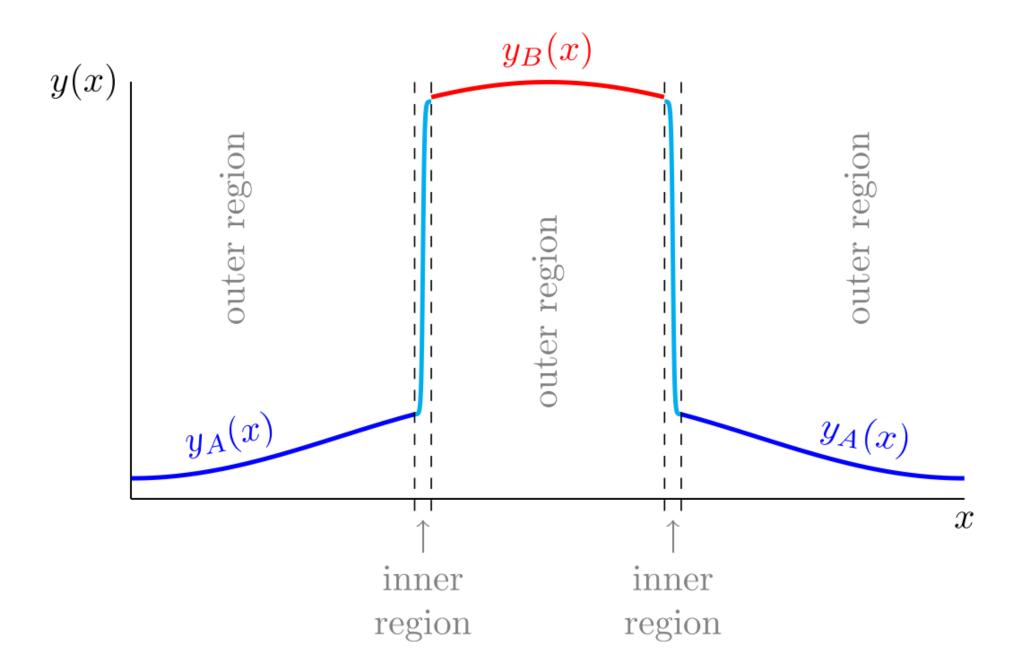
Other Spatial Heterogeneities



Other Spatial Heterogeneities



Mathematical Construction of multi-fronts



Small spatial heterogeneity

A spatially inhomogeneous Allen-Cahn equation:

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + u(1 - u^2) + \varepsilon F \left(u, \frac{\partial u}{\partial x}, x \right)$$

 $0 < \varepsilon \ll 1$

Concrete examples:

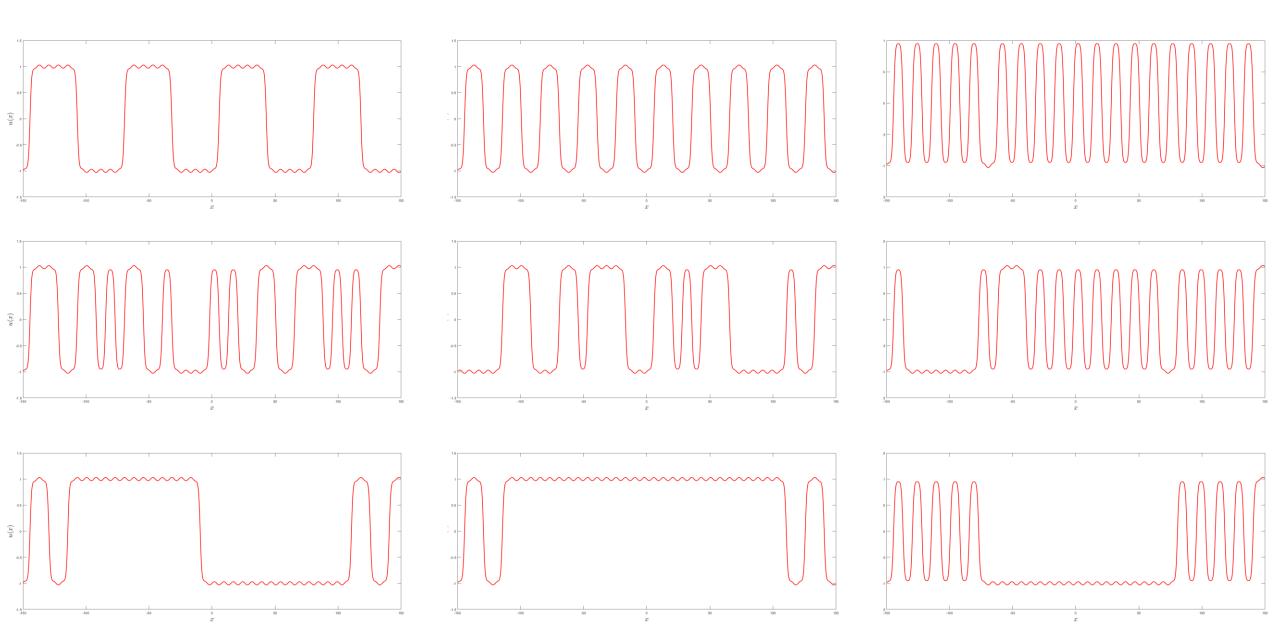
Spatially periodic forcing

$$F(U,V,x) = \alpha_1 \cos(kx) U + \alpha_2 \sin(kx) V + \alpha_3 \sin(kx)$$

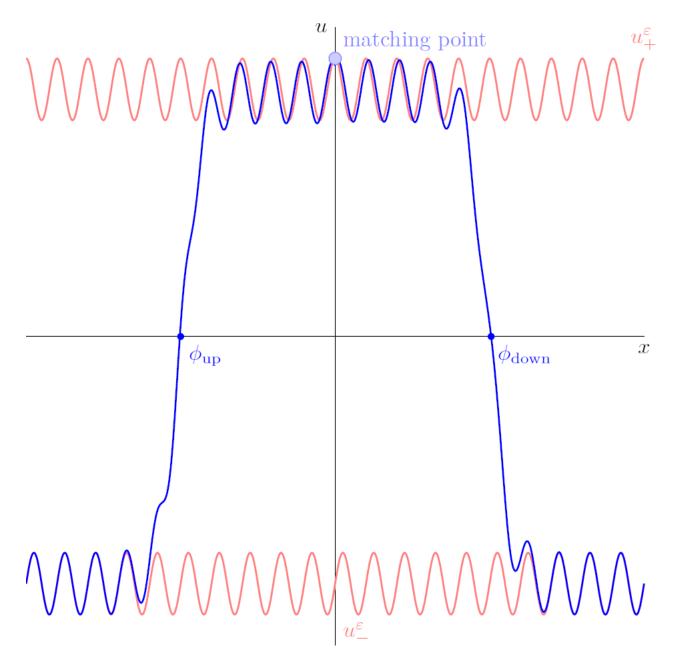
Spatially localized forcing
$$F(U,V,x) = H''(x) \ U + H'(x) \ V$$
 with
$$H(x) = \mathrm{sech}^2\Big(\mu \ x/\sqrt{2}\Big)$$

See talk in MS24 by
Arjen Doelman
TUESDAY 9:45h @ 1D237

Stationary multi-front solutions



Mathematical Construction of 2-front solutions



Construct u in two parts:

For
$$x < 0$$
:

$$u_{-}(x) = u_{-}^{0}(x) + \varepsilon u_{-}^{1}(x) + \mathcal{O}(\varepsilon^{2})$$

For
$$x < 0$$

$$u_+(x) = u_+^0(x) + \varepsilon u_+^1(x) + \mathcal{O}(\varepsilon^2)$$

Match solutions at x=0 for first two terms of expansion simultaneously at the $\mathcal{O}(\sqrt{\varepsilon})$ -level

Similar technique works for construction of *N*-front solutions and their slow time evolution

N-front dynamics in spatially heterogeneous AC

Let ϕ_1, \dots, ϕ_N denote the location/phases of the fronts They evolve (at leading order) according to a N-dimensional ODE

$$\frac{d\phi_{j}}{dt} = C \left[-\varepsilon \mathcal{R}_{j}(\phi_{j}) + 16 \left(e^{-\sqrt{2}\Delta\phi_{j}} - e^{-\sqrt{2}\Delta\phi_{j-1}} \right) \right]$$
Movement due to spatial heterogeneity
Where

 $\Delta\phi_j$ denotes the distance between front j and j+1 (infinite if it does not exist) and

 $\mathcal{R}_j(\phi)$ the Melnikov integral

$$\mathcal{R}_j(\phi) = \int_{-\infty}^{+\infty} F\{u_j^0(x), \partial_x u_j^0(x), x + \phi\} \partial_x u_j^0(x) dx$$

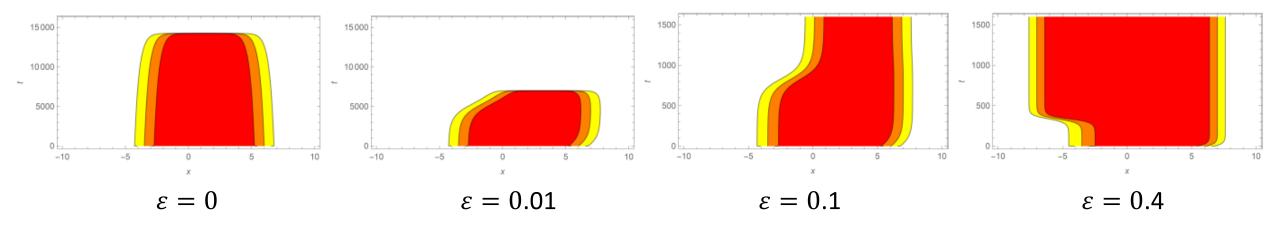
with u_i^0 the appropriate front solution of the unperturbed system

2-front dynamics in spatially periodic forced AC

Let ϕ_1, ϕ_2 denote the location/phases of the fronts They evolve according to a 2-dimensional ODE

$$\frac{d\phi_1}{dt} = \tilde{C} \left[-\varepsilon (A+B) \sin(k\phi_1) + e^{-\sqrt{2}(\phi_2 - \phi_1)} \right]$$

$$\frac{d\phi_2}{dt} = \tilde{C} \left[-\varepsilon (A-B) \sin(k\phi_2) - e^{-\sqrt{2}(\phi_2 - \phi_1)} \right]$$

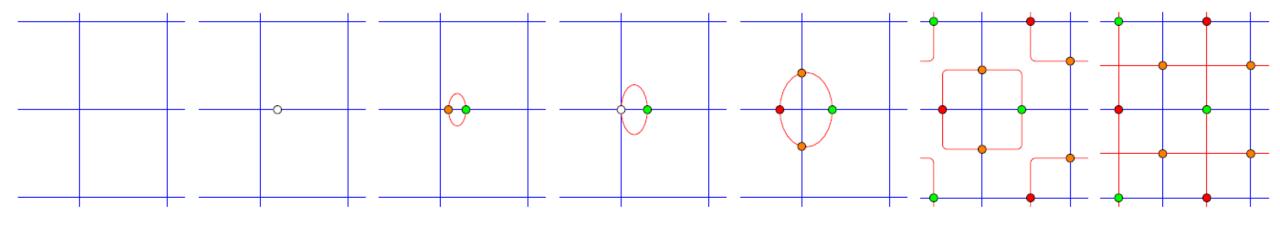


2-front dynamics in spatially periodic forced AC

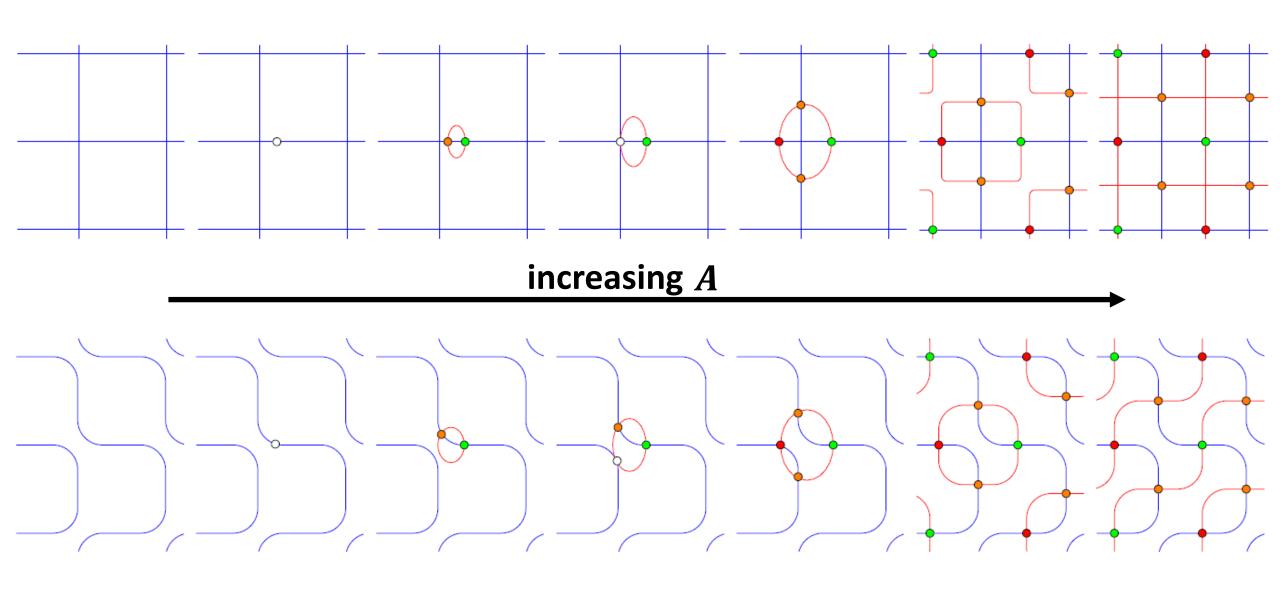
Let $D := \phi_2 - \phi_1$ and $S := \phi_2 + \phi_1$ and take B = 0 for simplicity. After a bunch of scalings:

$$\frac{dD}{dt} = -A \sin(R + kD/2)\cos(kS/2) - e^{-\sqrt{2}D}$$

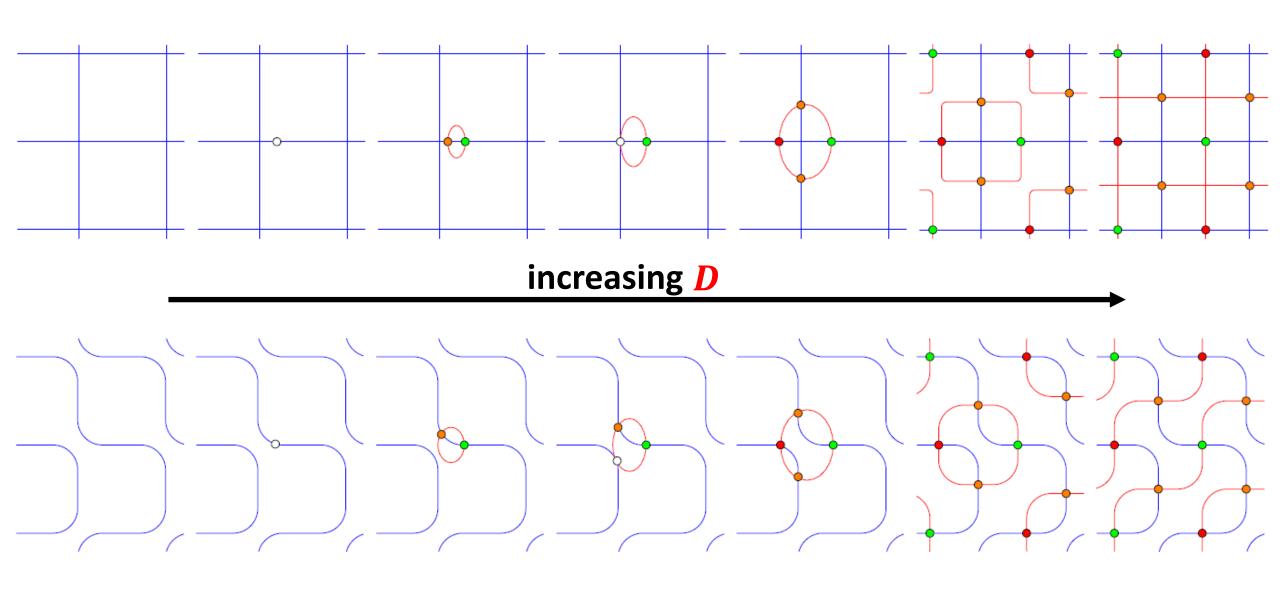
$$\frac{dS}{dt} = -A \cos(R + kD/2)\sin(kS/2)$$



B = 0



B = 0

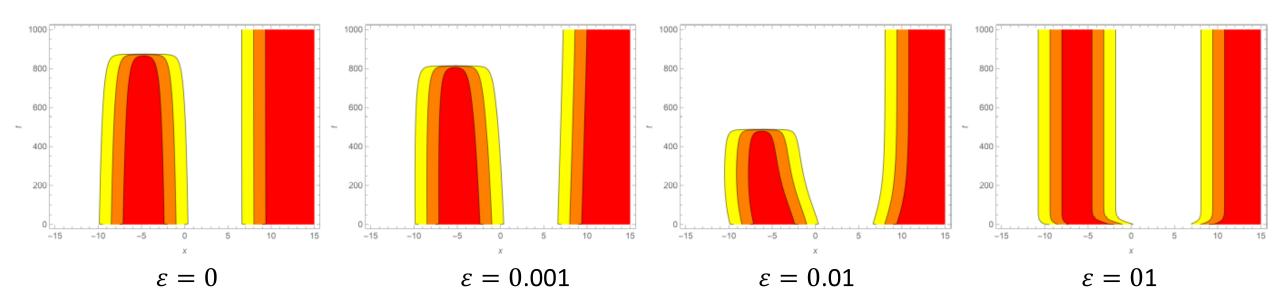


Stable stationary N-fronts in spatially heterogeneous AC

THEOREM

(spatially periodically forced Allen-Cahn equations)

Any N-front configuration with fronts located sufficiently far apart evolves to a (stable) stationary N-front configuration.



Summary

Spatially heterogeneous parameters lead to:

- * existence of (many different) stationary multi-front solutions
- different bifurcation diagrams due to smearing of Maxwell point
- new front dynamics:
 - combination of front interactions and spatial heterogeneity effects
 - · e.g. coarsening dynamics in Allen-Cahn can be stopped!

slides at bastiaansen.github.io

THANKS TO:

Tasso Kaper Arjen Doelman

Henk Dijkstra Anna von der Heydt

Bastiaansen, R., Dijkstra, H. A., & von der Heydt, A. S. (2021). Fragmented Tipping in a spatially heterogeneous world. *Environmental Research Letters, 17, 045006*

Bastiaansen, R., Doelman, A., & Kaper, T.J. Multi-front dynamics in spatially inhomogeneous Allen-Cahn Equations. *In progress*