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Examples of spatial patterning – ecosystems



Examples of spatial patterning – animals



clouds

melt ponds

Examples of spatial patterning – climate

sand dunes



Examples of spatial patterning – sociology



Examples of spatial patterning – physics



Examples of spatial patterning – physics



Examples of spatial patterning – physics/mussels



Programme
0) Lengthy introduction with patterns in all sort of systems

1) How do spatial patterns emerge?
• Importance for climate tipping points?

2) How do spatial patterns behave?
• Why ice cream does not stay soft?



A bit about myself

Since 2022: Assistant professor @ Utrecht University
Joint appointment:
• Mathematical Institute, Mathematical Department
• Institute for Marine and Atmospheric Research Utrecht (IMAU), Physics Department

Research focusses on climate and ecosystem responses in context of climatic changes using 
techniques from dynamical systems theory.

EARLIER:
2020-2022: Postdoc @ IMAU on climate response and tipping points
2015-2019: PhD @ Leiden University on vegetation patterns and desertification
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Active Creation



Pre-existing Heterogeneity



Self-Organisation



Turing Patterns

Seminal paper in 1952: “The chemical basis of morphogenesis”



Reaction-Diffusion Equations

[Klausmeier, 1999] [Gilad et al, 2004] [Rietkerk et al, 2002] [Liu et al, 2013]
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𝑑𝑡
= 𝑓(𝑢, 𝑣)
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𝑑𝑡
= 𝑔(𝑢, 𝑣)
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Reaction-Diffusion Equation for Dryland Ecosystems

[Klausmeier, 1999]

: water

: vegetation

: ratio of diffusion

: rainfall

: mortality



Reaction-Diffusion Equation for Dryland Ecosystems

[Rietkerk et al, 2004]



Spontaneous Pattern Formation



Turing patterns 𝑑𝑢

𝑑𝑡
= 𝑓(𝑢, 𝑣)
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= 𝑔(𝑢, 𝑣)
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Turing bifurcation

Instability to non-
uniform perturbations

→ Dispersion relation

𝑢

𝑣
=

𝑢∗
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+ 𝑒𝜆𝑡𝑒𝑖𝑘𝑥
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𝜆 𝑘 = ⋯

Weakly non-linear analysis
Ginzburg-Landau equation / Amplitude Equation
& Eckhaus/Benjamin-Feir-Newel criterion
[Eckhaus, 1965; Benjamin & Feir, 1967; Newell, 1974]



Busse balloon 𝑑𝑢

𝑑𝑡
= 𝑓(𝑢, 𝑣)

𝑑𝑣

𝑑𝑡
= 𝑔(𝑢, 𝑣)

+ 𝐷𝑢  ∆𝑢

+ 𝐷𝑣  ∆𝑣

Busse balloon

A model-dependent 
shape in
(parameter, observable)
space that indicates all 
stable patterned 
solutions to the PDE.

Busse balloon
Idea originates from thermal convection
[Busse, 1978]

Construction Busse balloon
Via numerical continuation

few general results on the 
shape of Busse balloon



Video source: wikiRigaou (wikimedia commons)

Rayleigh Bénard thermal convection





High rainfallLow rainfall
Critical rainfall

Onset of patterns

The orgin of patterns in dryland model





Multistability in the Busse balloon
Observation:

For a fixed parameter value, there 
is a continuous range of 
wavenumbers possible.

That is, there is a large
multistability of stable pattern 
states to the PDE

Consequence:

Specifying only parameter values is 
ambiguous, as it does not 
correspond to only one patterned 
state.



A Walk through the Busse balloon

Consequence:

In patterned shifts, you see smaller 
transitions from one patterned 
states to another





“a critical threshold beyond which a system 
reorganizes, often abruptly and/or irreversibly”

Tipping Points

IPCC AR6 (2021) :

Planetary transitions Ecosystem shifts



“a critical threshold beyond which a system 
reorganizes, often abruptly and/or irreversibly”

Tipping Points

IPCC AR6 (2021) :

Mathematics
Tipping points ↔ Bifurcations

𝑑𝑦

𝑑𝑡
= 𝑓(𝑦, 𝜇)

source: McKay et al, 2022
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Tipping of (Turing) patterns

Classic tipping Tipping of patterns





Dynamics of Patterned States

𝑃1 𝑃2 𝑃1 𝑃2 𝑃3

fronts pulses



Mathematical Study of Localised Structures (1)

𝜕𝑦

𝜕𝑡
=

𝜕2𝑦

𝜕𝑥2
+ 𝑦 1 − 𝑦2 + 𝜇

Example system:
Allen-Cahn Equation

Introduce travelling wave coordinate(s):

𝜁 ≔ 𝑥 − 𝑐𝑡

Assume state only depends on that:

𝑦 𝑥, 𝑡 = 𝑦(𝜁)

Gives an ordinary differential equation
often coined the ‘spatial dynamics’:

−𝑐𝑦′ = 𝑦′′ + 𝑦 1 − 𝑦2 + 𝜇



Mathematical Study of Localised Structures (2)

For 𝑐 = 0 and 𝜇 = 0
 system can be written as 

𝑦′ = 𝑝
𝑝′ = −𝑦(1 − 𝑦2)

Heteroclinic connections in the spatial dynamics correspond to front solutions to the PDE



Mathematical Construction of localised structures



Dynamics of Patterned States

𝑅𝑒 𝜆

𝐼𝑚 𝜆 1. SLOW Pattern Adaptation

2. FAST Pattern Degradation

𝑃1 𝑃2 𝑃1 𝑃2 𝑃3



Somaliland, 1948 [Macfadyen, 1950] Somaliland, 2008

1. SLOW pattern adaptation



Niger, 1950 [Valentin, 1999] Niger, 2008 Niger, 2010

Niger, 2016Niger, 2014Niger, 2011

2. FAST Pattern Degradation



Dynamics of 
𝝏𝒚

𝝏𝒕
= 𝑫

𝝏𝟐𝒚

𝝏𝒙𝟐 + 𝒚 𝟏 − 𝒚𝟐 + 𝝁 



𝒚𝒕 = 𝑫 𝒚𝒙𝒙 + 𝒚 𝟏 − 𝒚𝟐 + 𝝁 + 𝒙 +
𝟐

𝟓
 cos 5𝜋𝑥



𝒚𝒕 = 𝑫 𝒚𝒙𝒙 + 𝒚 𝟏 − 𝒚𝟐 + 𝝁 +
𝟏

𝟐
 cos 2𝜋𝑥 + sin 3𝜋𝑥



Bifurcations

𝑅𝑒 𝜆

𝐼𝑚 𝜆

1. SLOW Pattern Adaptation

At bifurcation:
→ Location of structure changes

2. FAST Pattern Degradation

At bifurcation:
→ Structures created or destroyed

What happens at bifurcation?





Phase Separation



𝜕𝑚

𝜕𝑡
= 𝛻 𝑓(𝑚)𝛻𝑚 − 𝜅𝛻(∆𝑚)

Cahn-Hilliard Equation



Ostwald Ripening



Lifschitz-Slyozov law breaks down 
after few hours.

Quan-Xing Liu, et al, PNAS (2013)

Ostwald Ripening in mussels

Lifschitz-Slyozov law
Evolution of growth

𝑅𝑎𝑑𝑖𝑢𝑠(𝑡) ~𝑡 ൗ1
3





Summary

Patterns in many systems

Emergence of patterns: Turing instability

Dynamics of patterns:
 SLOW pattern adaptation
 FAST pattern degradation

Slides available at bastiaansen.github.io
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